1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
pub mod stats;
pub mod utils;
use arrow::datatypes::{DataType, Field, Schema};
use datafusion_common::{not_impl_err, Result};
use datafusion_expr::type_coercion::aggregates::check_arg_count;
use datafusion_expr::{
function::AccumulatorArgs, Accumulator, AggregateUDF, Expr, GroupsAccumulator,
};
use std::fmt::Debug;
use std::{any::Any, sync::Arc};
use crate::physical_expr::PhysicalExpr;
use crate::sort_expr::{LexOrdering, PhysicalSortExpr};
use self::utils::{down_cast_any_ref, ordering_fields};
/// Creates a physical expression of the UDAF, that includes all necessary type coercion.
/// This function errors when `args`' can't be coerced to a valid argument type of the UDAF.
pub fn create_aggregate_expr(
fun: &AggregateUDF,
input_phy_exprs: &[Arc<dyn PhysicalExpr>],
sort_exprs: &[Expr],
ordering_req: &[PhysicalSortExpr],
schema: &Schema,
name: impl Into<String>,
ignore_nulls: bool,
) -> Result<Arc<dyn AggregateExpr>> {
let input_exprs_types = input_phy_exprs
.iter()
.map(|arg| arg.data_type(schema))
.collect::<Result<Vec<_>>>()?;
check_arg_count(
fun.name(),
&input_exprs_types,
&fun.signature().type_signature,
)?;
let ordering_types = ordering_req
.iter()
.map(|e| e.expr.data_type(schema))
.collect::<Result<Vec<_>>>()?;
let ordering_fields = ordering_fields(ordering_req, &ordering_types);
Ok(Arc::new(AggregateFunctionExpr {
fun: fun.clone(),
args: input_phy_exprs.to_vec(),
data_type: fun.return_type(&input_exprs_types)?,
name: name.into(),
schema: schema.clone(),
sort_exprs: sort_exprs.to_vec(),
ordering_req: ordering_req.to_vec(),
ignore_nulls,
ordering_fields,
}))
}
/// An aggregate expression that:
/// * knows its resulting field
/// * knows how to create its accumulator
/// * knows its accumulator's state's field
/// * knows the expressions from whose its accumulator will receive values
///
/// Any implementation of this trait also needs to implement the
/// `PartialEq<dyn Any>` to allows comparing equality between the
/// trait objects.
pub trait AggregateExpr: Send + Sync + Debug + PartialEq<dyn Any> {
/// Returns the aggregate expression as [`Any`] so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// the field of the final result of this aggregation.
fn field(&self) -> Result<Field>;
/// the accumulator used to accumulate values from the expressions.
/// the accumulator expects the same number of arguments as `expressions` and must
/// return states with the same description as `state_fields`
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>>;
/// the fields that encapsulate the Accumulator's state
/// the number of fields here equals the number of states that the accumulator contains
fn state_fields(&self) -> Result<Vec<Field>>;
/// expressions that are passed to the Accumulator.
/// Single-column aggregations such as `sum` return a single value, others (e.g. `cov`) return many.
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>>;
/// Order by requirements for the aggregate function
/// By default it is `None` (there is no requirement)
/// Order-sensitive aggregators, such as `FIRST_VALUE(x ORDER BY y)` should implement this
fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
None
}
/// Human readable name such as `"MIN(c2)"`. The default
/// implementation returns placeholder text.
fn name(&self) -> &str {
"AggregateExpr: default name"
}
/// If the aggregate expression has a specialized
/// [`GroupsAccumulator`] implementation. If this returns true,
/// `[Self::create_groups_accumulator`] will be called.
fn groups_accumulator_supported(&self) -> bool {
false
}
/// Return a specialized [`GroupsAccumulator`] that manages state
/// for all groups.
///
/// For maximum performance, a [`GroupsAccumulator`] should be
/// implemented in addition to [`Accumulator`].
fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
}
/// Construct an expression that calculates the aggregate in reverse.
/// Typically the "reverse" expression is itself (e.g. SUM, COUNT).
/// For aggregates that do not support calculation in reverse,
/// returns None (which is the default value).
fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
None
}
/// Creates accumulator implementation that supports retract
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
not_impl_err!("Retractable Accumulator hasn't been implemented for {self:?} yet")
}
}
/// Physical aggregate expression of a UDAF.
#[derive(Debug)]
pub struct AggregateFunctionExpr {
fun: AggregateUDF,
args: Vec<Arc<dyn PhysicalExpr>>,
/// Output / return type of this aggregate
data_type: DataType,
name: String,
schema: Schema,
// The logical order by expressions
sort_exprs: Vec<Expr>,
// The physical order by expressions
ordering_req: LexOrdering,
ignore_nulls: bool,
ordering_fields: Vec<Field>,
}
impl AggregateFunctionExpr {
/// Return the `AggregateUDF` used by this `AggregateFunctionExpr`
pub fn fun(&self) -> &AggregateUDF {
&self.fun
}
}
impl AggregateExpr for AggregateFunctionExpr {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
self.args.clone()
}
fn state_fields(&self) -> Result<Vec<Field>> {
self.fun.state_fields(
self.name(),
self.data_type.clone(),
self.ordering_fields.clone(),
)
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.data_type.clone(), true))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
let acc_args = AccumulatorArgs::new(
&self.data_type,
&self.schema,
self.ignore_nulls,
&self.sort_exprs,
);
self.fun.accumulator(acc_args)
}
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
let accumulator = self.create_accumulator()?;
// Accumulators that have window frame startings different
// than `UNBOUNDED PRECEDING`, such as `1 PRECEEDING`, need to
// implement retract_batch method in order to run correctly
// currently in DataFusion.
//
// If this `retract_batches` is not present, there is no way
// to calculate result correctly. For example, the query
//
// ```sql
// SELECT
// SUM(a) OVER(ORDER BY a ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS sum_a
// FROM
// t
// ```
//
// 1. First sum value will be the sum of rows between `[0, 1)`,
//
// 2. Second sum value will be the sum of rows between `[0, 2)`
//
// 3. Third sum value will be the sum of rows between `[1, 3)`, etc.
//
// Since the accumulator keeps the running sum:
//
// 1. First sum we add to the state sum value between `[0, 1)`
//
// 2. Second sum we add to the state sum value between `[1, 2)`
// (`[0, 1)` is already in the state sum, hence running sum will
// cover `[0, 2)` range)
//
// 3. Third sum we add to the state sum value between `[2, 3)`
// (`[0, 2)` is already in the state sum). Also we need to
// retract values between `[0, 1)` by this way we can obtain sum
// between [1, 3) which is indeed the apropriate range.
//
// When we use `UNBOUNDED PRECEDING` in the query starting
// index will always be 0 for the desired range, and hence the
// `retract_batch` method will not be called. In this case
// having retract_batch is not a requirement.
//
// This approach is a a bit different than window function
// approach. In window function (when they use a window frame)
// they get all the desired range during evaluation.
if !accumulator.supports_retract_batch() {
return not_impl_err!(
"Aggregate can not be used as a sliding accumulator because \
`retract_batch` is not implemented: {}",
self.name
);
}
Ok(accumulator)
}
fn name(&self) -> &str {
&self.name
}
fn groups_accumulator_supported(&self) -> bool {
self.fun.groups_accumulator_supported()
}
fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
self.fun.create_groups_accumulator()
}
fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
(!self.ordering_req.is_empty()).then_some(&self.ordering_req)
}
}
impl PartialEq<dyn Any> for AggregateFunctionExpr {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name
&& self.data_type == x.data_type
&& self.fun == x.fun
&& self.args.len() == x.args.len()
&& self
.args
.iter()
.zip(x.args.iter())
.all(|(this_arg, other_arg)| this_arg.eq(other_arg))
})
.unwrap_or(false)
}
}