1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

pub mod stats;
pub mod utils;

use arrow::datatypes::{DataType, Field, Schema};
use datafusion_common::{not_impl_err, Result};
use datafusion_expr::type_coercion::aggregates::check_arg_count;
use datafusion_expr::{
    function::AccumulatorArgs, Accumulator, AggregateUDF, Expr, GroupsAccumulator,
};
use std::fmt::Debug;
use std::{any::Any, sync::Arc};

use crate::physical_expr::PhysicalExpr;
use crate::sort_expr::{LexOrdering, PhysicalSortExpr};

use self::utils::{down_cast_any_ref, ordering_fields};

/// Creates a physical expression of the UDAF, that includes all necessary type coercion.
/// This function errors when `args`' can't be coerced to a valid argument type of the UDAF.
pub fn create_aggregate_expr(
    fun: &AggregateUDF,
    input_phy_exprs: &[Arc<dyn PhysicalExpr>],
    sort_exprs: &[Expr],
    ordering_req: &[PhysicalSortExpr],
    schema: &Schema,
    name: impl Into<String>,
    ignore_nulls: bool,
) -> Result<Arc<dyn AggregateExpr>> {
    let input_exprs_types = input_phy_exprs
        .iter()
        .map(|arg| arg.data_type(schema))
        .collect::<Result<Vec<_>>>()?;

    check_arg_count(
        fun.name(),
        &input_exprs_types,
        &fun.signature().type_signature,
    )?;

    let ordering_types = ordering_req
        .iter()
        .map(|e| e.expr.data_type(schema))
        .collect::<Result<Vec<_>>>()?;

    let ordering_fields = ordering_fields(ordering_req, &ordering_types);

    Ok(Arc::new(AggregateFunctionExpr {
        fun: fun.clone(),
        args: input_phy_exprs.to_vec(),
        data_type: fun.return_type(&input_exprs_types)?,
        name: name.into(),
        schema: schema.clone(),
        sort_exprs: sort_exprs.to_vec(),
        ordering_req: ordering_req.to_vec(),
        ignore_nulls,
        ordering_fields,
    }))
}

/// An aggregate expression that:
/// * knows its resulting field
/// * knows how to create its accumulator
/// * knows its accumulator's state's field
/// * knows the expressions from whose its accumulator will receive values
///
/// Any implementation of this trait also needs to implement the
/// `PartialEq<dyn Any>` to allows comparing equality between the
/// trait objects.
pub trait AggregateExpr: Send + Sync + Debug + PartialEq<dyn Any> {
    /// Returns the aggregate expression as [`Any`] so that it can be
    /// downcast to a specific implementation.
    fn as_any(&self) -> &dyn Any;

    /// the field of the final result of this aggregation.
    fn field(&self) -> Result<Field>;

    /// the accumulator used to accumulate values from the expressions.
    /// the accumulator expects the same number of arguments as `expressions` and must
    /// return states with the same description as `state_fields`
    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>>;

    /// the fields that encapsulate the Accumulator's state
    /// the number of fields here equals the number of states that the accumulator contains
    fn state_fields(&self) -> Result<Vec<Field>>;

    /// expressions that are passed to the Accumulator.
    /// Single-column aggregations such as `sum` return a single value, others (e.g. `cov`) return many.
    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>>;

    /// Order by requirements for the aggregate function
    /// By default it is `None` (there is no requirement)
    /// Order-sensitive aggregators, such as `FIRST_VALUE(x ORDER BY y)` should implement this
    fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
        None
    }

    /// Human readable name such as `"MIN(c2)"`. The default
    /// implementation returns placeholder text.
    fn name(&self) -> &str {
        "AggregateExpr: default name"
    }

    /// If the aggregate expression has a specialized
    /// [`GroupsAccumulator`] implementation. If this returns true,
    /// `[Self::create_groups_accumulator`] will be called.
    fn groups_accumulator_supported(&self) -> bool {
        false
    }

    /// Return a specialized [`GroupsAccumulator`] that manages state
    /// for all groups.
    ///
    /// For maximum performance, a [`GroupsAccumulator`] should be
    /// implemented in addition to [`Accumulator`].
    fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
        not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
    }

    /// Construct an expression that calculates the aggregate in reverse.
    /// Typically the "reverse" expression is itself (e.g. SUM, COUNT).
    /// For aggregates that do not support calculation in reverse,
    /// returns None (which is the default value).
    fn reverse_expr(&self) -> Option<Arc<dyn AggregateExpr>> {
        None
    }

    /// Creates accumulator implementation that supports retract
    fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        not_impl_err!("Retractable Accumulator hasn't been implemented for {self:?} yet")
    }
}

/// Physical aggregate expression of a UDAF.
#[derive(Debug)]
pub struct AggregateFunctionExpr {
    fun: AggregateUDF,
    args: Vec<Arc<dyn PhysicalExpr>>,
    /// Output / return type of this aggregate
    data_type: DataType,
    name: String,
    schema: Schema,
    // The logical order by expressions
    sort_exprs: Vec<Expr>,
    // The physical order by expressions
    ordering_req: LexOrdering,
    ignore_nulls: bool,
    ordering_fields: Vec<Field>,
}

impl AggregateFunctionExpr {
    /// Return the `AggregateUDF` used by this `AggregateFunctionExpr`
    pub fn fun(&self) -> &AggregateUDF {
        &self.fun
    }
}

impl AggregateExpr for AggregateFunctionExpr {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        self.args.clone()
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        self.fun.state_fields(
            self.name(),
            self.data_type.clone(),
            self.ordering_fields.clone(),
        )
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new(&self.name, self.data_type.clone(), true))
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        let acc_args = AccumulatorArgs::new(
            &self.data_type,
            &self.schema,
            self.ignore_nulls,
            &self.sort_exprs,
        );

        self.fun.accumulator(acc_args)
    }

    fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        let accumulator = self.create_accumulator()?;

        // Accumulators that have window frame startings different
        // than `UNBOUNDED PRECEDING`, such as `1 PRECEEDING`, need to
        // implement retract_batch method in order to run correctly
        // currently in DataFusion.
        //
        // If this `retract_batches` is not present, there is no way
        // to calculate result correctly. For example, the query
        //
        // ```sql
        // SELECT
        //  SUM(a) OVER(ORDER BY a ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS sum_a
        // FROM
        //  t
        // ```
        //
        // 1. First sum value will be the sum of rows between `[0, 1)`,
        //
        // 2. Second sum value will be the sum of rows between `[0, 2)`
        //
        // 3. Third sum value will be the sum of rows between `[1, 3)`, etc.
        //
        // Since the accumulator keeps the running sum:
        //
        // 1. First sum we add to the state sum value between `[0, 1)`
        //
        // 2. Second sum we add to the state sum value between `[1, 2)`
        // (`[0, 1)` is already in the state sum, hence running sum will
        // cover `[0, 2)` range)
        //
        // 3. Third sum we add to the state sum value between `[2, 3)`
        // (`[0, 2)` is already in the state sum).  Also we need to
        // retract values between `[0, 1)` by this way we can obtain sum
        // between [1, 3) which is indeed the apropriate range.
        //
        // When we use `UNBOUNDED PRECEDING` in the query starting
        // index will always be 0 for the desired range, and hence the
        // `retract_batch` method will not be called. In this case
        // having retract_batch is not a requirement.
        //
        // This approach is a a bit different than window function
        // approach. In window function (when they use a window frame)
        // they get all the desired range during evaluation.
        if !accumulator.supports_retract_batch() {
            return not_impl_err!(
                "Aggregate can not be used as a sliding accumulator because \
                     `retract_batch` is not implemented: {}",
                self.name
            );
        }
        Ok(accumulator)
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn groups_accumulator_supported(&self) -> bool {
        self.fun.groups_accumulator_supported()
    }

    fn create_groups_accumulator(&self) -> Result<Box<dyn GroupsAccumulator>> {
        self.fun.create_groups_accumulator()
    }

    fn order_bys(&self) -> Option<&[PhysicalSortExpr]> {
        (!self.ordering_req.is_empty()).then_some(&self.ordering_req)
    }
}

impl PartialEq<dyn Any> for AggregateFunctionExpr {
    fn eq(&self, other: &dyn Any) -> bool {
        down_cast_any_ref(other)
            .downcast_ref::<Self>()
            .map(|x| {
                self.name == x.name
                    && self.data_type == x.data_type
                    && self.fun == x.fun
                    && self.args.len() == x.args.len()
                    && self
                        .args
                        .iter()
                        .zip(x.args.iter())
                        .all(|(this_arg, other_arg)| this_arg.eq(other_arg))
            })
            .unwrap_or(false)
    }
}