1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Optimizer rule to prune unnecessary columns from intermediate schemas
//! inside the [`LogicalPlan`]. This rule:
//! - Removes unnecessary columns that do not appear at the output and/or are
//! not used during any computation step.
//! - Adds projections to decrease table column size before operators that
//! benefit from a smaller memory footprint at its input.
//! - Removes unnecessary [`LogicalPlan::Projection`]s from the [`LogicalPlan`].
use std::collections::HashSet;
use std::sync::Arc;
use crate::optimizer::ApplyOrder;
use crate::{OptimizerConfig, OptimizerRule};
use arrow::datatypes::SchemaRef;
use datafusion_common::{
get_required_group_by_exprs_indices, Column, DFSchema, DFSchemaRef, JoinType, Result,
};
use datafusion_expr::expr::{Alias, ScalarFunction, ScalarFunctionDefinition};
use datafusion_expr::{
logical_plan::LogicalPlan, projection_schema, Aggregate, BinaryExpr, Cast, Distinct,
Expr, Projection, TableScan, Window,
};
use datafusion_expr::utils::inspect_expr_pre;
use hashbrown::HashMap;
use itertools::{izip, Itertools};
/// A rule for optimizing logical plans by removing unused columns/fields.
///
/// `OptimizeProjections` is an optimizer rule that identifies and eliminates
/// columns from a logical plan that are not used by downstream operations.
/// This can improve query performance and reduce unnecessary data processing.
///
/// The rule analyzes the input logical plan, determines the necessary column
/// indices, and then removes any unnecessary columns. It also removes any
/// unnecessary projections from the plan tree.
#[derive(Default)]
pub struct OptimizeProjections {}
impl OptimizeProjections {
#[allow(missing_docs)]
pub fn new() -> Self {
Self {}
}
}
impl OptimizerRule for OptimizeProjections {
fn try_optimize(
&self,
plan: &LogicalPlan,
config: &dyn OptimizerConfig,
) -> Result<Option<LogicalPlan>> {
// All output fields are necessary:
let indices = (0..plan.schema().fields().len()).collect::<Vec<_>>();
optimize_projections(plan, config, &indices)
}
fn name(&self) -> &str {
"optimize_projections"
}
fn apply_order(&self) -> Option<ApplyOrder> {
None
}
}
/// Removes unnecessary columns (e.g. columns that do not appear in the output
/// schema and/or are not used during any computation step such as expression
/// evaluation) from the logical plan and its inputs.
///
/// # Parameters
///
/// - `plan`: A reference to the input `LogicalPlan` to optimize.
/// - `config`: A reference to the optimizer configuration.
/// - `indices`: A slice of column indices that represent the necessary column
/// indices for downstream operations.
///
/// # Returns
///
/// A `Result` object with the following semantics:
///
/// - `Ok(Some(LogicalPlan))`: An optimized `LogicalPlan` without unnecessary
/// columns.
/// - `Ok(None)`: Signal that the given logical plan did not require any change.
/// - `Err(error)`: An error occured during the optimization process.
fn optimize_projections(
plan: &LogicalPlan,
config: &dyn OptimizerConfig,
indices: &[usize],
) -> Result<Option<LogicalPlan>> {
// `child_required_indices` stores
// - indices of the columns required for each child
// - a flag indicating whether putting a projection above children is beneficial for the parent.
// As an example LogicalPlan::Filter benefits from small tables. Hence for filter child this flag would be `true`.
let child_required_indices: Vec<(Vec<usize>, bool)> = match plan {
LogicalPlan::Sort(_)
| LogicalPlan::Filter(_)
| LogicalPlan::Repartition(_)
| LogicalPlan::Unnest(_)
| LogicalPlan::Union(_)
| LogicalPlan::SubqueryAlias(_)
| LogicalPlan::Distinct(Distinct::On(_)) => {
// Pass index requirements from the parent as well as column indices
// that appear in this plan's expressions to its child. All these
// operators benefit from "small" inputs, so the projection_beneficial
// flag is `true`.
let exprs = plan.expressions();
plan.inputs()
.into_iter()
.map(|input| {
get_all_required_indices(indices, input, exprs.iter())
.map(|idxs| (idxs, true))
})
.collect::<Result<_>>()?
}
LogicalPlan::Limit(_) | LogicalPlan::Prepare(_) => {
// Pass index requirements from the parent as well as column indices
// that appear in this plan's expressions to its child. These operators
// do not benefit from "small" inputs, so the projection_beneficial
// flag is `false`.
let exprs = plan.expressions();
plan.inputs()
.into_iter()
.map(|input| {
get_all_required_indices(indices, input, exprs.iter())
.map(|idxs| (idxs, false))
})
.collect::<Result<_>>()?
}
LogicalPlan::Copy(_)
| LogicalPlan::Ddl(_)
| LogicalPlan::Dml(_)
| LogicalPlan::Explain(_)
| LogicalPlan::Analyze(_)
| LogicalPlan::Subquery(_)
| LogicalPlan::Distinct(Distinct::All(_)) => {
// These plans require all their fields, and their children should
// be treated as final plans -- otherwise, we may have schema a
// mismatch.
// TODO: For some subquery variants (e.g. a subquery arising from an
// EXISTS expression), we may not need to require all indices.
plan.inputs()
.iter()
.map(|input| ((0..input.schema().fields().len()).collect_vec(), false))
.collect::<Vec<_>>()
}
LogicalPlan::EmptyRelation(_)
| LogicalPlan::RecursiveQuery(_)
| LogicalPlan::Statement(_)
| LogicalPlan::Values(_)
| LogicalPlan::Extension(_)
| LogicalPlan::DescribeTable(_) => {
// These operators have no inputs, so stop the optimization process.
// TODO: Add support for `LogicalPlan::Extension`.
return Ok(None);
}
LogicalPlan::Projection(proj) => {
return if let Some(proj) = merge_consecutive_projections(proj)? {
Ok(Some(
rewrite_projection_given_requirements(&proj, config, indices)?
// Even if we cannot optimize the projection, merge if possible:
.unwrap_or_else(|| LogicalPlan::Projection(proj)),
))
} else {
rewrite_projection_given_requirements(proj, config, indices)
};
}
LogicalPlan::Aggregate(aggregate) => {
// Split parent requirements to GROUP BY and aggregate sections:
let n_group_exprs = aggregate.group_expr_len()?;
let (group_by_reqs, mut aggregate_reqs): (Vec<usize>, Vec<usize>) =
indices.iter().partition(|&&idx| idx < n_group_exprs);
// Offset aggregate indices so that they point to valid indices at
// `aggregate.aggr_expr`:
for idx in aggregate_reqs.iter_mut() {
*idx -= n_group_exprs;
}
// Get absolutely necessary GROUP BY fields:
let group_by_expr_existing = aggregate
.group_expr
.iter()
.map(|group_by_expr| group_by_expr.display_name())
.collect::<Result<Vec<_>>>()?;
let new_group_bys = if let Some(simplest_groupby_indices) =
get_required_group_by_exprs_indices(
aggregate.input.schema(),
&group_by_expr_existing,
) {
// Some of the fields in the GROUP BY may be required by the
// parent even if these fields are unnecessary in terms of
// functional dependency.
let required_indices =
merge_slices(&simplest_groupby_indices, &group_by_reqs);
get_at_indices(&aggregate.group_expr, &required_indices)
} else {
aggregate.group_expr.clone()
};
// Only use the absolutely necessary aggregate expressions required
// by the parent:
let mut new_aggr_expr = get_at_indices(&aggregate.aggr_expr, &aggregate_reqs);
// Aggregations always need at least one aggregate expression.
// With a nested count, we don't require any column as input, but
// still need to create a correct aggregate, which may be optimized
// out later. As an example, consider the following query:
//
// SELECT COUNT(*) FROM (SELECT COUNT(*) FROM [...])
//
// which always returns 1.
if new_aggr_expr.is_empty()
&& new_group_bys.is_empty()
&& !aggregate.aggr_expr.is_empty()
{
new_aggr_expr = vec![aggregate.aggr_expr[0].clone()];
}
let all_exprs_iter = new_group_bys.iter().chain(new_aggr_expr.iter());
let schema = aggregate.input.schema();
let necessary_indices = indices_referred_by_exprs(schema, all_exprs_iter)?;
let aggregate_input = if let Some(input) =
optimize_projections(&aggregate.input, config, &necessary_indices)?
{
input
} else {
aggregate.input.as_ref().clone()
};
// Simplify the input of the aggregation by adding a projection so
// that its input only contains absolutely necessary columns for
// the aggregate expressions. Note that necessary_indices refer to
// fields in `aggregate.input.schema()`.
let necessary_exprs = get_required_exprs(schema, &necessary_indices);
let (aggregate_input, _) =
add_projection_on_top_if_helpful(aggregate_input, necessary_exprs)?;
// Create a new aggregate plan with the updated input and only the
// absolutely necessary fields:
return Aggregate::try_new(
Arc::new(aggregate_input),
new_group_bys,
new_aggr_expr,
)
.map(|aggregate| Some(LogicalPlan::Aggregate(aggregate)));
}
LogicalPlan::Window(window) => {
// Split parent requirements to child and window expression sections:
let n_input_fields = window.input.schema().fields().len();
let (child_reqs, mut window_reqs): (Vec<usize>, Vec<usize>) =
indices.iter().partition(|&&idx| idx < n_input_fields);
// Offset window expression indices so that they point to valid
// indices at `window.window_expr`:
for idx in window_reqs.iter_mut() {
*idx -= n_input_fields;
}
// Only use window expressions that are absolutely necessary according
// to parent requirements:
let new_window_expr = get_at_indices(&window.window_expr, &window_reqs);
// Get all the required column indices at the input, either by the
// parent or window expression requirements.
let required_indices = get_all_required_indices(
&child_reqs,
&window.input,
new_window_expr.iter(),
)?;
let window_child = if let Some(new_window_child) =
optimize_projections(&window.input, config, &required_indices)?
{
new_window_child
} else {
window.input.as_ref().clone()
};
return if new_window_expr.is_empty() {
// When no window expression is necessary, use the input directly:
Ok(Some(window_child))
} else {
// Calculate required expressions at the input of the window.
// Please note that we use `old_child`, because `required_indices`
// refers to `old_child`.
let required_exprs =
get_required_exprs(window.input.schema(), &required_indices);
let (window_child, _) =
add_projection_on_top_if_helpful(window_child, required_exprs)?;
Window::try_new(new_window_expr, Arc::new(window_child))
.map(|window| Some(LogicalPlan::Window(window)))
};
}
LogicalPlan::Join(join) => {
let left_len = join.left.schema().fields().len();
let (left_req_indices, right_req_indices) =
split_join_requirements(left_len, indices, &join.join_type);
let exprs = plan.expressions();
let left_indices =
get_all_required_indices(&left_req_indices, &join.left, exprs.iter())?;
let right_indices =
get_all_required_indices(&right_req_indices, &join.right, exprs.iter())?;
// Joins benefit from "small" input tables (lower memory usage).
// Therefore, each child benefits from projection:
vec![(left_indices, true), (right_indices, true)]
}
LogicalPlan::CrossJoin(cross_join) => {
let left_len = cross_join.left.schema().fields().len();
let (left_child_indices, right_child_indices) =
split_join_requirements(left_len, indices, &JoinType::Inner);
// Joins benefit from "small" input tables (lower memory usage).
// Therefore, each child benefits from projection:
vec![(left_child_indices, true), (right_child_indices, true)]
}
LogicalPlan::TableScan(table_scan) => {
let schema = table_scan.source.schema();
// Get indices referred to in the original (schema with all fields)
// given projected indices.
let projection = with_indices(&table_scan.projection, schema, |map| {
indices.iter().map(|&idx| map[idx]).collect()
});
return TableScan::try_new(
table_scan.table_name.clone(),
table_scan.source.clone(),
Some(projection),
table_scan.filters.clone(),
table_scan.fetch,
)
.map(|table| Some(LogicalPlan::TableScan(table)));
}
};
let new_inputs = izip!(child_required_indices, plan.inputs().into_iter())
.map(|((required_indices, projection_beneficial), child)| {
let (input, is_changed) = if let Some(new_input) =
optimize_projections(child, config, &required_indices)?
{
(new_input, true)
} else {
(child.clone(), false)
};
let project_exprs = get_required_exprs(child.schema(), &required_indices);
let (input, proj_added) = if projection_beneficial {
add_projection_on_top_if_helpful(input, project_exprs)?
} else {
(input, false)
};
Ok((is_changed || proj_added).then_some(input))
})
.collect::<Result<Vec<_>>>()?;
if new_inputs.iter().all(|child| child.is_none()) {
// All children are the same in this case, no need to change the plan:
Ok(None)
} else {
// At least one of the children is changed:
let new_inputs = izip!(new_inputs, plan.inputs())
// If new_input is `None`, this means child is not changed, so use
// `old_child` during construction:
.map(|(new_input, old_child)| new_input.unwrap_or_else(|| old_child.clone()))
.collect();
let exprs = plan.expressions();
plan.with_new_exprs(exprs, new_inputs).map(Some)
}
}
/// This function applies the given function `f` to the projection indices
/// `proj_indices` if they exist. Otherwise, applies `f` to a default set
/// of indices according to `schema`.
fn with_indices<F>(
proj_indices: &Option<Vec<usize>>,
schema: SchemaRef,
mut f: F,
) -> Vec<usize>
where
F: FnMut(&[usize]) -> Vec<usize>,
{
match proj_indices {
Some(indices) => f(indices.as_slice()),
None => {
let range: Vec<usize> = (0..schema.fields.len()).collect();
f(range.as_slice())
}
}
}
/// Merges consecutive projections.
///
/// Given a projection `proj`, this function attempts to merge it with a previous
/// projection if it exists and if merging is beneficial. Merging is considered
/// beneficial when expressions in the current projection are non-trivial and
/// appear more than once in its input fields. This can act as a caching mechanism
/// for non-trivial computations.
///
/// # Parameters
///
/// * `proj` - A reference to the `Projection` to be merged.
///
/// # Returns
///
/// A `Result` object with the following semantics:
///
/// - `Ok(Some(Projection))`: Merge was beneficial and successful. Contains the
/// merged projection.
/// - `Ok(None)`: Signals that merge is not beneficial (and has not taken place).
/// - `Err(error)`: An error occured during the function call.
fn merge_consecutive_projections(proj: &Projection) -> Result<Option<Projection>> {
let LogicalPlan::Projection(prev_projection) = proj.input.as_ref() else {
return Ok(None);
};
// Count usages (referrals) of each projection expression in its input fields:
let mut column_referral_map = HashMap::<Column, usize>::new();
for columns in proj.expr.iter().flat_map(|expr| expr.to_columns()) {
for col in columns.into_iter() {
*column_referral_map.entry(col.clone()).or_default() += 1;
}
}
// If an expression is non-trivial and appears more than once, consecutive
// projections will benefit from a compute-once approach. For details, see:
// https://github.com/apache/arrow-datafusion/issues/8296
if column_referral_map.into_iter().any(|(col, usage)| {
usage > 1
&& !is_expr_trivial(
&prev_projection.expr
[prev_projection.schema.index_of_column(&col).unwrap()],
)
}) {
return Ok(None);
}
// If all the expression of the top projection can be rewritten, do so and
// create a new projection:
let new_exprs = proj
.expr
.iter()
.map(|expr| rewrite_expr(expr, prev_projection))
.collect::<Result<Option<Vec<_>>>>()?;
if let Some(new_exprs) = new_exprs {
let new_exprs = new_exprs
.into_iter()
.zip(proj.expr.iter())
.map(|(new_expr, old_expr)| {
new_expr.alias_if_changed(old_expr.name_for_alias()?)
})
.collect::<Result<Vec<_>>>()?;
Projection::try_new(new_exprs, prev_projection.input.clone()).map(Some)
} else {
Ok(None)
}
}
/// Trim the given expression by removing any unnecessary layers of aliasing.
/// If the expression is an alias, the function returns the underlying expression.
/// Otherwise, it returns the given expression as is.
///
/// Without trimming, we can end up with unnecessary indirections inside expressions
/// during projection merges.
///
/// Consider:
///
/// ```text
/// Projection(a1 + b1 as sum1)
/// --Projection(a as a1, b as b1)
/// ----Source(a, b)
/// ```
///
/// After merge, we want to produce:
///
/// ```text
/// Projection(a + b as sum1)
/// --Source(a, b)
/// ```
///
/// Without trimming, we would end up with:
///
/// ```text
/// Projection((a as a1 + b as b1) as sum1)
/// --Source(a, b)
/// ```
fn trim_expr(expr: Expr) -> Expr {
match expr {
Expr::Alias(alias) => trim_expr(*alias.expr),
_ => expr,
}
}
// Check whether `expr` is trivial; i.e. it doesn't imply any computation.
fn is_expr_trivial(expr: &Expr) -> bool {
matches!(expr, Expr::Column(_) | Expr::Literal(_))
}
// Exit early when there is no rewrite to do.
macro_rules! rewrite_expr_with_check {
($expr:expr, $input:expr) => {
if let Some(value) = rewrite_expr($expr, $input)? {
value
} else {
return Ok(None);
}
};
}
/// Rewrites a projection expression using the projection before it (i.e. its input)
/// This is a subroutine to the `merge_consecutive_projections` function.
///
/// # Parameters
///
/// * `expr` - A reference to the expression to rewrite.
/// * `input` - A reference to the input of the projection expression (itself
/// a projection).
///
/// # Returns
///
/// A `Result` object with the following semantics:
///
/// - `Ok(Some(Expr))`: Rewrite was successful. Contains the rewritten result.
/// - `Ok(None)`: Signals that `expr` can not be rewritten.
/// - `Err(error)`: An error occurred during the function call.
fn rewrite_expr(expr: &Expr, input: &Projection) -> Result<Option<Expr>> {
let result = match expr {
Expr::Column(col) => {
// Find index of column:
let idx = input.schema.index_of_column(col)?;
input.expr[idx].clone()
}
Expr::BinaryExpr(binary) => Expr::BinaryExpr(BinaryExpr::new(
Box::new(trim_expr(rewrite_expr_with_check!(&binary.left, input))),
binary.op,
Box::new(trim_expr(rewrite_expr_with_check!(&binary.right, input))),
)),
Expr::Alias(alias) => Expr::Alias(Alias::new(
trim_expr(rewrite_expr_with_check!(&alias.expr, input)),
alias.relation.clone(),
alias.name.clone(),
)),
Expr::Literal(_) => expr.clone(),
Expr::Cast(cast) => {
let new_expr = rewrite_expr_with_check!(&cast.expr, input);
Expr::Cast(Cast::new(Box::new(new_expr), cast.data_type.clone()))
}
Expr::ScalarFunction(scalar_fn) => {
// TODO: Support UDFs.
let ScalarFunctionDefinition::BuiltIn(fun) = scalar_fn.func_def else {
return Ok(None);
};
return Ok(scalar_fn
.args
.iter()
.map(|expr| rewrite_expr(expr, input))
.collect::<Result<Option<_>>>()?
.map(|new_args| {
Expr::ScalarFunction(ScalarFunction::new(fun, new_args))
}));
}
// Unsupported type for consecutive projection merge analysis.
_ => return Ok(None),
};
Ok(Some(result))
}
/// Accumulates outer-referenced columns by the
/// given expression, `expr`.
///
/// # Parameters
///
/// * `expr` - The expression to analyze for outer-referenced columns.
/// * `columns` - A mutable reference to a `HashSet<Column>` where detected
/// columns are collected.
fn outer_columns(expr: &Expr, columns: &mut HashSet<Column>) {
// inspect_expr_pre doesn't handle subquery references, so find them explicitly
inspect_expr_pre(expr, |expr| {
match expr {
Expr::OuterReferenceColumn(_, col) => {
columns.insert(col.clone());
}
Expr::ScalarSubquery(subquery) => {
outer_columns_helper_multi(&subquery.outer_ref_columns, columns);
}
Expr::Exists(exists) => {
outer_columns_helper_multi(&exists.subquery.outer_ref_columns, columns);
}
Expr::InSubquery(insubquery) => {
outer_columns_helper_multi(
&insubquery.subquery.outer_ref_columns,
columns,
);
}
_ => {}
};
Ok(()) as Result<()>
})
// unwrap: closure above never returns Err, so can not be Err here
.unwrap();
}
/// A recursive subroutine that accumulates outer-referenced columns by the
/// given expressions (`exprs`).
///
/// # Parameters
///
/// * `exprs` - The expressions to analyze for outer-referenced columns.
/// * `columns` - A mutable reference to a `HashSet<Column>` where detected
/// columns are collected.
fn outer_columns_helper_multi<'a>(
exprs: impl IntoIterator<Item = &'a Expr>,
columns: &mut HashSet<Column>,
) {
exprs.into_iter().for_each(|e| outer_columns(e, columns));
}
/// Generates the required expressions (columns) that reside at `indices` of
/// the given `input_schema`.
///
/// # Arguments
///
/// * `input_schema` - A reference to the input schema.
/// * `indices` - A slice of `usize` indices specifying required columns.
///
/// # Returns
///
/// A vector of `Expr::Column` expressions residing at `indices` of the `input_schema`.
fn get_required_exprs(input_schema: &Arc<DFSchema>, indices: &[usize]) -> Vec<Expr> {
let fields = input_schema.fields();
indices
.iter()
.map(|&idx| Expr::Column(fields[idx].qualified_column()))
.collect()
}
/// Get indices of the fields referred to by any expression in `exprs` within
/// the given schema (`input_schema`).
///
/// # Arguments
///
/// * `input_schema`: The input schema to analyze for index requirements.
/// * `exprs`: An iterator of expressions for which we want to find necessary
/// field indices.
///
/// # Returns
///
/// A [`Result`] object containing the indices of all required fields in
/// `input_schema` to calculate all `exprs` successfully.
fn indices_referred_by_exprs<'a>(
input_schema: &DFSchemaRef,
exprs: impl Iterator<Item = &'a Expr>,
) -> Result<Vec<usize>> {
let indices = exprs
.map(|expr| indices_referred_by_expr(input_schema, expr))
.collect::<Result<Vec<_>>>()?;
Ok(indices
.into_iter()
.flatten()
// Make sure no duplicate entries exist and indices are ordered:
.sorted()
.dedup()
.collect())
}
/// Get indices of the fields referred to by the given expression `expr` within
/// the given schema (`input_schema`).
///
/// # Parameters
///
/// * `input_schema`: The input schema to analyze for index requirements.
/// * `expr`: An expression for which we want to find necessary field indices.
///
/// # Returns
///
/// A [`Result`] object containing the indices of all required fields in
/// `input_schema` to calculate `expr` successfully.
fn indices_referred_by_expr(
input_schema: &DFSchemaRef,
expr: &Expr,
) -> Result<Vec<usize>> {
let mut cols = expr.to_columns()?;
// Get outer-referenced (subquery) columns:
outer_columns(expr, &mut cols);
Ok(cols
.iter()
.flat_map(|col| input_schema.index_of_column(col))
.collect())
}
/// Gets all required indices for the input; i.e. those required by the parent
/// and those referred to by `exprs`.
///
/// # Parameters
///
/// * `parent_required_indices` - A slice of indices required by the parent plan.
/// * `input` - The input logical plan to analyze for index requirements.
/// * `exprs` - An iterator of expressions used to determine required indices.
///
/// # Returns
///
/// A `Result` containing a vector of `usize` indices containing all the required
/// indices.
fn get_all_required_indices<'a>(
parent_required_indices: &[usize],
input: &LogicalPlan,
exprs: impl Iterator<Item = &'a Expr>,
) -> Result<Vec<usize>> {
indices_referred_by_exprs(input.schema(), exprs)
.map(|indices| merge_slices(parent_required_indices, &indices))
}
/// Retrieves the expressions at specified indices within the given slice. Ignores
/// any invalid indices.
///
/// # Parameters
///
/// * `exprs` - A slice of expressions to index into.
/// * `indices` - A slice of indices specifying the positions of expressions sought.
///
/// # Returns
///
/// A vector of expressions corresponding to specified indices.
fn get_at_indices(exprs: &[Expr], indices: &[usize]) -> Vec<Expr> {
indices
.iter()
// Indices may point to further places than `exprs` len.
.filter_map(|&idx| exprs.get(idx).cloned())
.collect()
}
/// Merges two slices into a single vector with sorted (ascending) and
/// deduplicated elements. For example, merging `[3, 2, 4]` and `[3, 6, 1]`
/// will produce `[1, 2, 3, 6]`.
fn merge_slices<T: Clone + Ord>(left: &[T], right: &[T]) -> Vec<T> {
// Make sure to sort before deduping, which removes the duplicates:
left.iter()
.cloned()
.chain(right.iter().cloned())
.sorted()
.dedup()
.collect()
}
/// Splits requirement indices for a join into left and right children based on
/// the join type.
///
/// This function takes the length of the left child, a slice of requirement
/// indices, and the type of join (e.g. `INNER`, `LEFT`, `RIGHT`) as arguments.
/// Depending on the join type, it divides the requirement indices into those
/// that apply to the left child and those that apply to the right child.
///
/// - For `INNER`, `LEFT`, `RIGHT` and `FULL` joins, the requirements are split
/// between left and right children. The right child indices are adjusted to
/// point to valid positions within the right child by subtracting the length
/// of the left child.
///
/// - For `LEFT ANTI`, `LEFT SEMI`, `RIGHT SEMI` and `RIGHT ANTI` joins, all
/// requirements are re-routed to either the left child or the right child
/// directly, depending on the join type.
///
/// # Parameters
///
/// * `left_len` - The length of the left child.
/// * `indices` - A slice of requirement indices.
/// * `join_type` - The type of join (e.g. `INNER`, `LEFT`, `RIGHT`).
///
/// # Returns
///
/// A tuple containing two vectors of `usize` indices: The first vector represents
/// the requirements for the left child, and the second vector represents the
/// requirements for the right child. The indices are appropriately split and
/// adjusted based on the join type.
fn split_join_requirements(
left_len: usize,
indices: &[usize],
join_type: &JoinType,
) -> (Vec<usize>, Vec<usize>) {
match join_type {
// In these cases requirements are split between left/right children:
JoinType::Inner | JoinType::Left | JoinType::Right | JoinType::Full => {
let (left_reqs, mut right_reqs): (Vec<usize>, Vec<usize>) =
indices.iter().partition(|&&idx| idx < left_len);
// Decrease right side indices by `left_len` so that they point to valid
// positions within the right child:
for idx in right_reqs.iter_mut() {
*idx -= left_len;
}
(left_reqs, right_reqs)
}
// All requirements can be re-routed to left child directly.
JoinType::LeftAnti | JoinType::LeftSemi => (indices.to_vec(), vec![]),
// All requirements can be re-routed to right side directly.
// No need to change index, join schema is right child schema.
JoinType::RightSemi | JoinType::RightAnti => (vec![], indices.to_vec()),
}
}
/// Adds a projection on top of a logical plan if doing so reduces the number
/// of columns for the parent operator.
///
/// This function takes a `LogicalPlan` and a list of projection expressions.
/// If the projection is beneficial (it reduces the number of columns in the
/// plan) a new `LogicalPlan` with the projection is created and returned, along
/// with a `true` flag. If the projection doesn't reduce the number of columns,
/// the original plan is returned with a `false` flag.
///
/// # Parameters
///
/// * `plan` - The input `LogicalPlan` to potentially add a projection to.
/// * `project_exprs` - A list of expressions for the projection.
///
/// # Returns
///
/// A `Result` containing a tuple with two values: The resulting `LogicalPlan`
/// (with or without the added projection) and a `bool` flag indicating if a
/// projection was added (`true`) or not (`false`).
fn add_projection_on_top_if_helpful(
plan: LogicalPlan,
project_exprs: Vec<Expr>,
) -> Result<(LogicalPlan, bool)> {
// Make sure projection decreases the number of columns, otherwise it is unnecessary.
if project_exprs.len() >= plan.schema().fields().len() {
Ok((plan, false))
} else {
Projection::try_new(project_exprs, Arc::new(plan))
.map(|proj| (LogicalPlan::Projection(proj), true))
}
}
/// Rewrite the given projection according to the fields required by its
/// ancestors.
///
/// # Parameters
///
/// * `proj` - A reference to the original projection to rewrite.
/// * `config` - A reference to the optimizer configuration.
/// * `indices` - A slice of indices representing the columns required by the
/// ancestors of the given projection.
///
/// # Returns
///
/// A `Result` object with the following semantics:
///
/// - `Ok(Some(LogicalPlan))`: Contains the rewritten projection
/// - `Ok(None)`: No rewrite necessary.
/// - `Err(error)`: An error occured during the function call.
fn rewrite_projection_given_requirements(
proj: &Projection,
config: &dyn OptimizerConfig,
indices: &[usize],
) -> Result<Option<LogicalPlan>> {
let exprs_used = get_at_indices(&proj.expr, indices);
let required_indices =
indices_referred_by_exprs(proj.input.schema(), exprs_used.iter())?;
return if let Some(input) =
optimize_projections(&proj.input, config, &required_indices)?
{
if is_projection_unnecessary(&input, &exprs_used)? {
Ok(Some(input))
} else {
Projection::try_new(exprs_used, Arc::new(input))
.map(|proj| Some(LogicalPlan::Projection(proj)))
}
} else if exprs_used.len() < proj.expr.len() {
// Projection expression used is different than the existing projection.
// In this case, even if the child doesn't change, we should update the
// projection to use fewer columns:
if is_projection_unnecessary(&proj.input, &exprs_used)? {
Ok(Some(proj.input.as_ref().clone()))
} else {
Projection::try_new(exprs_used, proj.input.clone())
.map(|proj| Some(LogicalPlan::Projection(proj)))
}
} else {
// Projection doesn't change.
Ok(None)
};
}
/// Projection is unnecessary, when
/// - input schema of the projection, output schema of the projection are same, and
/// - all projection expressions are either Column or Literal
fn is_projection_unnecessary(input: &LogicalPlan, proj_exprs: &[Expr]) -> Result<bool> {
Ok(&projection_schema(input, proj_exprs)? == input.schema()
&& proj_exprs.iter().all(is_expr_trivial))
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::optimize_projections::OptimizeProjections;
use crate::test::{assert_optimized_plan_eq, test_table_scan};
use arrow::datatypes::{DataType, Field, Schema};
use datafusion_common::{Result, TableReference};
use datafusion_expr::{
binary_expr, col, count, lit, logical_plan::builder::LogicalPlanBuilder, not,
table_scan, try_cast, when, Expr, Like, LogicalPlan, Operator,
};
fn assert_optimized_plan_equal(plan: &LogicalPlan, expected: &str) -> Result<()> {
assert_optimized_plan_eq(Arc::new(OptimizeProjections::new()), plan, expected)
}
#[test]
fn merge_two_projection() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a")])?
.project(vec![binary_expr(lit(1), Operator::Plus, col("a"))])?
.build()?;
let expected = "Projection: Int32(1) + test.a\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn merge_three_projection() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a"), col("b")])?
.project(vec![col("a")])?
.project(vec![binary_expr(lit(1), Operator::Plus, col("a"))])?
.build()?;
let expected = "Projection: Int32(1) + test.a\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn merge_alias() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a")])?
.project(vec![col("a").alias("alias")])?
.build()?;
let expected = "Projection: test.a AS alias\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn merge_nested_alias() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").alias("alias1").alias("alias2")])?
.project(vec![col("alias2").alias("alias")])?
.build()?;
let expected = "Projection: test.a AS alias\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_nested_count() -> Result<()> {
let schema = Schema::new(vec![Field::new("foo", DataType::Int32, false)]);
let groups: Vec<Expr> = vec![];
let plan = table_scan(TableReference::none(), &schema, None)
.unwrap()
.aggregate(groups.clone(), vec![count(lit(1))])
.unwrap()
.aggregate(groups, vec![count(lit(1))])
.unwrap()
.build()
.unwrap();
let expected = "Aggregate: groupBy=[[]], aggr=[[COUNT(Int32(1))]]\
\n Projection: \
\n Aggregate: groupBy=[[]], aggr=[[COUNT(Int32(1))]]\
\n TableScan: ?table? projection=[]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_struct_field_push_down() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Int64, false),
Field::new_struct(
"s",
vec![
Field::new("x", DataType::Int64, false),
Field::new("y", DataType::Int64, false),
],
false,
),
]));
let table_scan = table_scan(TableReference::none(), &schema, None)?.build()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("s").field("x")])?
.build()?;
let expected = "Projection: (?table?.s)[x]\
\n TableScan: ?table? projection=[s]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_neg_push_down() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![-col("a")])?
.build()?;
let expected = "Projection: (- test.a)\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_null() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_null()])?
.build()?;
let expected = "Projection: test.a IS NULL\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_not_null() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_not_null()])?
.build()?;
let expected = "Projection: test.a IS NOT NULL\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_true() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_true()])?
.build()?;
let expected = "Projection: test.a IS TRUE\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_not_true() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_not_true()])?
.build()?;
let expected = "Projection: test.a IS NOT TRUE\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_false() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_false()])?
.build()?;
let expected = "Projection: test.a IS FALSE\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_not_false() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_not_false()])?
.build()?;
let expected = "Projection: test.a IS NOT FALSE\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_unknown() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_unknown()])?
.build()?;
let expected = "Projection: test.a IS UNKNOWN\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_is_not_unknown() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").is_not_unknown()])?
.build()?;
let expected = "Projection: test.a IS NOT UNKNOWN\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_not() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![not(col("a"))])?
.build()?;
let expected = "Projection: NOT test.a\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_try_cast() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![try_cast(col("a"), DataType::Float64)])?
.build()?;
let expected = "Projection: TRY_CAST(test.a AS Float64)\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_similar_to() -> Result<()> {
let table_scan = test_table_scan()?;
let expr = Box::new(col("a"));
let pattern = Box::new(lit("[0-9]"));
let similar_to_expr =
Expr::SimilarTo(Like::new(false, expr, pattern, None, false));
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![similar_to_expr])?
.build()?;
let expected = "Projection: test.a SIMILAR TO Utf8(\"[0-9]\")\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
#[test]
fn test_between() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a").between(lit(1), lit(3))])?
.build()?;
let expected = "Projection: test.a BETWEEN Int32(1) AND Int32(3)\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
// Test outer projection isn't discarded despite the same schema as inner
// https://github.com/apache/arrow-datafusion/issues/8942
#[test]
fn test_derived_column() -> Result<()> {
let table_scan = test_table_scan()?;
let plan = LogicalPlanBuilder::from(table_scan)
.project(vec![col("a"), lit(0).alias("d")])?
.project(vec![
col("a"),
when(col("a").eq(lit(1)), lit(10))
.otherwise(col("d"))?
.alias("d"),
])?
.build()?;
let expected = "Projection: test.a, CASE WHEN test.a = Int32(1) THEN Int32(10) ELSE d END AS d\
\n Projection: test.a, Int32(0) AS d\
\n TableScan: test projection=[a]";
assert_optimized_plan_equal(&plan, expected)
}
}