1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Optimizer rule to replace `LIMIT 0` or
//! `LIMIT whose ancestor LIMIT's skip is greater than or equal to current's fetch`
//! on a plan with an empty relation.
//! This rule also removes OFFSET 0 from the [LogicalPlan]
//! This saves time in planning and executing the query.
use crate::{OptimizerConfig, OptimizerRule};
use datafusion_common::Result;
use datafusion_expr::{
    logical_plan::{EmptyRelation, Limit, LogicalPlan},
    utils::from_plan,
};

/// Optimization rule that replaces LIMIT 0 or
/// LIMIT whose ancestor LIMIT's skip is greater than or equal to current's fetch
/// with an [LogicalPlan::EmptyRelation].
/// This rule also removes OFFSET 0 from the [LogicalPlan]
#[derive(Default)]
pub struct EliminateLimit;

impl EliminateLimit {
    #[allow(missing_docs)]
    pub fn new() -> Self {
        Self {}
    }
}

/// Ancestor indicates the current ancestor in the LogicalPlan tree
/// when traversing down related to "eliminate limit".
enum Ancestor {
    /// Limit
    FromLimit { skip: usize },
    /// Other nodes that don't affect the adjustment of "Limit"
    NotRelevant,
}

/// replaces LIMIT 0 with an [LogicalPlan::EmptyRelation]
/// replaces LIMIT node whose ancestor LIMIT's skip is greater than or equal to current's fetch
/// with an [LogicalPlan::EmptyRelation]
/// removes OFFSET 0 from the [LogicalPlan]
fn eliminate_limit(
    _optimizer: &EliminateLimit,
    ancestor: &Ancestor,
    plan: &LogicalPlan,
    _optimizer_config: &OptimizerConfig,
) -> Result<LogicalPlan> {
    match plan {
        LogicalPlan::Limit(Limit {
            skip, fetch, input, ..
        }) => {
            let ancestor_skip = match ancestor {
                Ancestor::FromLimit { skip } => *skip,
                _ => 0,
            };
            // If ancestor's skip is equal or greater than current's fetch,
            // replaces with an [LogicalPlan::EmptyRelation].
            // For such query, the inner query(select * from xxx limit 5) should be optimized as an EmptyRelation:
            // select * from (select * from xxx limit 5) a limit 2 offset 5;
            match fetch {
                Some(fetch) => {
                    if *fetch == 0 || ancestor_skip >= *fetch {
                        return Ok(LogicalPlan::EmptyRelation(EmptyRelation {
                            produce_one_row: false,
                            schema: input.schema().clone(),
                        }));
                    }
                }
                None => {
                    if *skip == 0 {
                        // If there is no LIMIT and OFFSET is zero, LIMIT/OFFSET can be removed
                        return Ok(input.as_ref().clone());
                    }
                }
            }

            let expr = plan.expressions();

            // apply the optimization to all inputs of the plan
            let inputs = plan.inputs();
            let new_inputs = inputs
                .iter()
                .map(|plan| {
                    eliminate_limit(
                        _optimizer,
                        &Ancestor::FromLimit { skip: *skip },
                        plan,
                        _optimizer_config,
                    )
                })
                .collect::<Result<Vec<_>>>()?;

            from_plan(plan, &expr, &new_inputs)
        }
        // Rest: recurse and find possible LIMIT 0/Multi LIMIT OFFSET nodes
        _ => {
            // For those plans(projection/sort/..) which do not affect the output rows of sub-plans, we still use ancestor;
            // otherwise, use NotRelevant instead.
            let ancestor = match plan {
                LogicalPlan::Projection { .. } | LogicalPlan::Sort { .. } => ancestor,
                _ => &Ancestor::NotRelevant,
            };

            let expr = plan.expressions();

            // apply the optimization to all inputs of the plan
            let inputs = plan.inputs();
            let new_inputs = inputs
                .iter()
                .map(|plan| {
                    eliminate_limit(_optimizer, ancestor, plan, _optimizer_config)
                })
                .collect::<Result<Vec<_>>>()?;

            from_plan(plan, &expr, &new_inputs)
        }
    }
}

impl OptimizerRule for EliminateLimit {
    fn optimize(
        &self,
        plan: &LogicalPlan,
        optimizer_config: &mut OptimizerConfig,
    ) -> Result<LogicalPlan> {
        eliminate_limit(self, &Ancestor::NotRelevant, plan, optimizer_config)
    }

    fn name(&self) -> &str {
        "eliminate_limit"
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test::*;
    use datafusion_common::Column;
    use datafusion_expr::{
        col,
        logical_plan::{builder::LogicalPlanBuilder, JoinType},
        sum,
    };

    fn assert_optimized_plan_eq(plan: &LogicalPlan, expected: &str) {
        let rule = EliminateLimit::new();
        let optimized_plan = rule
            .optimize(plan, &mut OptimizerConfig::new())
            .expect("failed to optimize plan");
        let formatted_plan = format!("{:?}", optimized_plan);
        assert_eq!(formatted_plan, expected);
        assert_eq!(plan.schema(), optimized_plan.schema());
    }

    #[test]
    fn limit_0_root() {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .limit(0, Some(0))
            .unwrap()
            .build()
            .unwrap();
        // No aggregate / scan / limit
        let expected = "EmptyRelation";
        assert_optimized_plan_eq(&plan, expected);
    }

    #[test]
    fn limit_0_nested() {
        let table_scan = test_table_scan().unwrap();
        let plan1 = LogicalPlanBuilder::from(table_scan.clone())
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .build()
            .unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .limit(0, Some(0))
            .unwrap()
            .union(plan1)
            .unwrap()
            .build()
            .unwrap();

        // Left side is removed
        let expected = "Union\
            \n  EmptyRelation\
            \n  Aggregate: groupBy=[[test.a]], aggr=[[SUM(test.b)]]\
            \n    TableScan: test";
        assert_optimized_plan_eq(&plan, expected);
    }

    #[test]
    fn limit_fetch_with_ancestor_limit_skip() {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .limit(0, Some(2))
            .unwrap()
            .limit(2, None)
            .unwrap()
            .build()
            .unwrap();

        // No aggregate / scan / limit
        let expected = "Limit: skip=2, fetch=None\
            \n  EmptyRelation";
        assert_optimized_plan_eq(&plan, expected);
    }

    #[test]
    fn multi_limit_offset_sort_eliminate() {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .limit(0, Some(2))
            .unwrap()
            .sort(vec![col("a")])
            .unwrap()
            .limit(2, Some(1))
            .unwrap()
            .build()
            .unwrap();

        let expected = "Limit: skip=2, fetch=1\
            \n  Sort: test.a\
            \n    EmptyRelation";
        assert_optimized_plan_eq(&plan, expected);
    }

    #[test]
    fn limit_fetch_with_ancestor_limit_fetch() {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .limit(0, Some(2))
            .unwrap()
            .sort(vec![col("a")])
            .unwrap()
            .limit(0, Some(1))
            .unwrap()
            .build()
            .unwrap();

        let expected = "Limit: skip=0, fetch=1\
            \n  Sort: test.a\
            \n    Limit: skip=0, fetch=2\
            \n      Aggregate: groupBy=[[test.a]], aggr=[[SUM(test.b)]]\
            \n        TableScan: test";
        assert_optimized_plan_eq(&plan, expected);
    }

    #[test]
    fn limit_with_ancestor_limit() {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .limit(2, Some(1))
            .unwrap()
            .sort(vec![col("a")])
            .unwrap()
            .limit(3, Some(1))
            .unwrap()
            .build()
            .unwrap();

        let expected = "Limit: skip=3, fetch=1\
            \n  Sort: test.a\
            \n    EmptyRelation";
        assert_optimized_plan_eq(&plan, expected);
    }

    #[test]
    fn limit_join_with_ancestor_limit() {
        let table_scan = test_table_scan().unwrap();
        let table_scan_inner = test_table_scan_with_name("test1").unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .limit(2, Some(1))
            .unwrap()
            .join_using(
                &table_scan_inner,
                JoinType::Inner,
                vec![Column::from_name("a".to_string())],
            )
            .unwrap()
            .limit(3, Some(1))
            .unwrap()
            .build()
            .unwrap();

        let expected = "Limit: skip=3, fetch=1\
            \n  Inner Join: Using test.a = test1.a\
            \n    Limit: skip=2, fetch=1\
            \n      TableScan: test\
            \n    TableScan: test1";
        assert_optimized_plan_eq(&plan, expected);
    }

    #[test]
    fn remove_zero_offset() {
        let table_scan = test_table_scan().unwrap();
        let plan = LogicalPlanBuilder::from(table_scan)
            .aggregate(vec![col("a")], vec![sum(col("b"))])
            .unwrap()
            .limit(0, None)
            .unwrap()
            .build()
            .unwrap();

        let expected = "Aggregate: groupBy=[[test.a]], aggr=[[SUM(test.b)]]\
            \n  TableScan: test";
        assert_optimized_plan_eq(&plan, expected);
    }
}