datafusion_functions_window/
lead_lag.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! `lead` and `lag` window function implementations
19
20use crate::utils::{get_scalar_value_from_args, get_signed_integer};
21use arrow::datatypes::FieldRef;
22use datafusion_common::arrow::array::ArrayRef;
23use datafusion_common::arrow::datatypes::DataType;
24use datafusion_common::arrow::datatypes::Field;
25use datafusion_common::{arrow_datafusion_err, DataFusionError, Result, ScalarValue};
26use datafusion_expr::window_doc_sections::DOC_SECTION_ANALYTICAL;
27use datafusion_expr::{
28    Documentation, Literal, PartitionEvaluator, ReversedUDWF, Signature, TypeSignature,
29    Volatility, WindowUDFImpl,
30};
31use datafusion_functions_window_common::expr::ExpressionArgs;
32use datafusion_functions_window_common::field::WindowUDFFieldArgs;
33use datafusion_functions_window_common::partition::PartitionEvaluatorArgs;
34use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
35use std::any::Any;
36use std::cmp::min;
37use std::collections::VecDeque;
38use std::hash::Hash;
39use std::ops::{Neg, Range};
40use std::sync::{Arc, LazyLock};
41
42get_or_init_udwf!(
43    Lag,
44    lag,
45    "Returns the row value that precedes the current row by a specified \
46    offset within partition. If no such row exists, then returns the \
47    default value.",
48    WindowShift::lag
49);
50get_or_init_udwf!(
51    Lead,
52    lead,
53    "Returns the value from a row that follows the current row by a \
54    specified offset within the partition. If no such row exists, then \
55    returns the default value.",
56    WindowShift::lead
57);
58
59/// Create an expression to represent the `lag` window function
60///
61/// returns value evaluated at the row that is offset rows before the current row within the partition;
62/// if there is no such row, instead return default (which must be of the same type as value).
63/// Both offset and default are evaluated with respect to the current row.
64/// If omitted, offset defaults to 1 and default to null
65pub fn lag(
66    arg: datafusion_expr::Expr,
67    shift_offset: Option<i64>,
68    default_value: Option<ScalarValue>,
69) -> datafusion_expr::Expr {
70    let shift_offset_lit = shift_offset
71        .map(|v| v.lit())
72        .unwrap_or(ScalarValue::Null.lit());
73    let default_lit = default_value.unwrap_or(ScalarValue::Null).lit();
74
75    lag_udwf().call(vec![arg, shift_offset_lit, default_lit])
76}
77
78/// Create an expression to represent the `lead` window function
79///
80/// returns value evaluated at the row that is offset rows after the current row within the partition;
81/// if there is no such row, instead return default (which must be of the same type as value).
82/// Both offset and default are evaluated with respect to the current row.
83/// If omitted, offset defaults to 1 and default to null
84pub fn lead(
85    arg: datafusion_expr::Expr,
86    shift_offset: Option<i64>,
87    default_value: Option<ScalarValue>,
88) -> datafusion_expr::Expr {
89    let shift_offset_lit = shift_offset
90        .map(|v| v.lit())
91        .unwrap_or(ScalarValue::Null.lit());
92    let default_lit = default_value.unwrap_or(ScalarValue::Null).lit();
93
94    lead_udwf().call(vec![arg, shift_offset_lit, default_lit])
95}
96
97#[derive(Debug, PartialEq, Eq, Hash)]
98enum WindowShiftKind {
99    Lag,
100    Lead,
101}
102
103impl WindowShiftKind {
104    fn name(&self) -> &'static str {
105        match self {
106            WindowShiftKind::Lag => "lag",
107            WindowShiftKind::Lead => "lead",
108        }
109    }
110
111    /// In [`WindowShiftEvaluator`] a positive offset is used to signal
112    /// computation of `lag()`. So here we negate the input offset
113    /// value when computing `lead()`.
114    fn shift_offset(&self, value: Option<i64>) -> i64 {
115        match self {
116            WindowShiftKind::Lag => value.unwrap_or(1),
117            WindowShiftKind::Lead => value.map(|v| v.neg()).unwrap_or(-1),
118        }
119    }
120}
121
122/// window shift expression
123#[derive(Debug, PartialEq, Eq, Hash)]
124pub struct WindowShift {
125    signature: Signature,
126    kind: WindowShiftKind,
127}
128
129impl WindowShift {
130    fn new(kind: WindowShiftKind) -> Self {
131        Self {
132            signature: Signature::one_of(
133                vec![
134                    TypeSignature::Any(1),
135                    TypeSignature::Any(2),
136                    TypeSignature::Any(3),
137                ],
138                Volatility::Immutable,
139            ),
140            kind,
141        }
142    }
143
144    pub fn lag() -> Self {
145        Self::new(WindowShiftKind::Lag)
146    }
147
148    pub fn lead() -> Self {
149        Self::new(WindowShiftKind::Lead)
150    }
151}
152
153static LAG_DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
154    Documentation::builder(DOC_SECTION_ANALYTICAL, "Returns value evaluated at the row that is offset rows before the \
155            current row within the partition; if there is no such row, instead return default \
156            (which must be of the same type as value).", "lag(expression, offset, default)")
157        .with_argument("expression", "Expression to operate on")
158        .with_argument("offset", "Integer. Specifies how many rows back \
159        the value of expression should be retrieved. Defaults to 1.")
160        .with_argument("default", "The default value if the offset is \
161        not within the partition. Must be of the same type as expression.")
162        .with_sql_example(r#"
163```sql
164-- Example usage of the lag window function:
165SELECT employee_id,
166    salary,
167    lag(salary, 1, 0) OVER (ORDER BY employee_id) AS prev_salary
168FROM employees;
169
170+-------------+--------+-------------+
171| employee_id | salary | prev_salary |
172+-------------+--------+-------------+
173| 1           | 30000  | 0           |
174| 2           | 50000  | 30000       |
175| 3           | 70000  | 50000       |
176| 4           | 60000  | 70000       |
177+-------------+--------+-------------+
178```
179"#)
180        .build()
181});
182
183fn get_lag_doc() -> &'static Documentation {
184    &LAG_DOCUMENTATION
185}
186
187static LEAD_DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
188    Documentation::builder(DOC_SECTION_ANALYTICAL,
189            "Returns value evaluated at the row that is offset rows after the \
190            current row within the partition; if there is no such row, instead return default \
191            (which must be of the same type as value).",
192        "lead(expression, offset, default)")
193        .with_argument("expression", "Expression to operate on")
194        .with_argument("offset", "Integer. Specifies how many rows \
195        forward the value of expression should be retrieved. Defaults to 1.")
196        .with_argument("default", "The default value if the offset is \
197        not within the partition. Must be of the same type as expression.")
198        .with_sql_example(r#"
199```sql
200-- Example usage of lead window function:
201SELECT
202    employee_id,
203    department,
204    salary,
205    lead(salary, 1, 0) OVER (PARTITION BY department ORDER BY salary) AS next_salary
206FROM employees;
207
208+-------------+-------------+--------+--------------+
209| employee_id | department  | salary | next_salary  |
210+-------------+-------------+--------+--------------+
211| 1           | Sales       | 30000  | 50000        |
212| 2           | Sales       | 50000  | 70000        |
213| 3           | Sales       | 70000  | 0            |
214| 4           | Engineering | 40000  | 60000        |
215| 5           | Engineering | 60000  | 0            |
216+-------------+-------------+--------+--------------+
217```
218"#)
219        .build()
220});
221
222fn get_lead_doc() -> &'static Documentation {
223    &LEAD_DOCUMENTATION
224}
225
226impl WindowUDFImpl for WindowShift {
227    fn as_any(&self) -> &dyn Any {
228        self
229    }
230
231    fn name(&self) -> &str {
232        self.kind.name()
233    }
234
235    fn signature(&self) -> &Signature {
236        &self.signature
237    }
238
239    /// Handles the case where `NULL` expression is passed as an
240    /// argument to `lead`/`lag`. The type is refined depending
241    /// on the default value argument.
242    ///
243    /// For more details see: <https://github.com/apache/datafusion/issues/12717>
244    fn expressions(&self, expr_args: ExpressionArgs) -> Vec<Arc<dyn PhysicalExpr>> {
245        parse_expr(expr_args.input_exprs(), expr_args.input_fields())
246            .into_iter()
247            .collect::<Vec<_>>()
248    }
249
250    fn partition_evaluator(
251        &self,
252        partition_evaluator_args: PartitionEvaluatorArgs,
253    ) -> Result<Box<dyn PartitionEvaluator>> {
254        let shift_offset =
255            get_scalar_value_from_args(partition_evaluator_args.input_exprs(), 1)?
256                .map(get_signed_integer)
257                .map_or(Ok(None), |v| v.map(Some))
258                .map(|n| self.kind.shift_offset(n))
259                .map(|offset| {
260                    if partition_evaluator_args.is_reversed() {
261                        -offset
262                    } else {
263                        offset
264                    }
265                })?;
266        let default_value = parse_default_value(
267            partition_evaluator_args.input_exprs(),
268            partition_evaluator_args.input_fields(),
269        )?;
270
271        Ok(Box::new(WindowShiftEvaluator {
272            shift_offset,
273            default_value,
274            ignore_nulls: partition_evaluator_args.ignore_nulls(),
275            non_null_offsets: VecDeque::new(),
276        }))
277    }
278
279    fn field(&self, field_args: WindowUDFFieldArgs) -> Result<FieldRef> {
280        let return_field = parse_expr_field(field_args.input_fields())?;
281
282        Ok(return_field
283            .as_ref()
284            .clone()
285            .with_name(field_args.name())
286            .into())
287    }
288
289    fn reverse_expr(&self) -> ReversedUDWF {
290        match self.kind {
291            WindowShiftKind::Lag => ReversedUDWF::Reversed(lag_udwf()),
292            WindowShiftKind::Lead => ReversedUDWF::Reversed(lead_udwf()),
293        }
294    }
295
296    fn documentation(&self) -> Option<&Documentation> {
297        match self.kind {
298            WindowShiftKind::Lag => Some(get_lag_doc()),
299            WindowShiftKind::Lead => Some(get_lead_doc()),
300        }
301    }
302}
303
304/// When `lead`/`lag` is evaluated on a `NULL` expression we attempt to
305/// refine it by matching it with the type of the default value.
306///
307/// For e.g. in `lead(NULL, 1, false)` the generic `ScalarValue::Null`
308/// is refined into `ScalarValue::Boolean(None)`. Only the type is
309/// refined, the expression value remains `NULL`.
310///
311/// When the window function is evaluated with `NULL` expression
312/// this guarantees that the type matches with that of the default
313/// value.
314///
315/// For more details see: <https://github.com/apache/datafusion/issues/12717>
316fn parse_expr(
317    input_exprs: &[Arc<dyn PhysicalExpr>],
318    input_fields: &[FieldRef],
319) -> Result<Arc<dyn PhysicalExpr>> {
320    assert!(!input_exprs.is_empty());
321    assert!(!input_fields.is_empty());
322
323    let expr = Arc::clone(input_exprs.first().unwrap());
324    let expr_field = input_fields.first().unwrap();
325
326    // Handles the most common case where NULL is unexpected
327    if !expr_field.data_type().is_null() {
328        return Ok(expr);
329    }
330
331    let default_value = get_scalar_value_from_args(input_exprs, 2)?;
332    default_value.map_or(Ok(expr), |value| {
333        ScalarValue::try_from(&value.data_type()).map(|v| {
334            Arc::new(datafusion_physical_expr::expressions::Literal::new(v))
335                as Arc<dyn PhysicalExpr>
336        })
337    })
338}
339
340static NULL_FIELD: LazyLock<FieldRef> =
341    LazyLock::new(|| Field::new("value", DataType::Null, true).into());
342
343/// Returns the field of the default value(if provided) when the
344/// expression is `NULL`.
345///
346/// Otherwise, returns the expression field unchanged.
347fn parse_expr_field(input_fields: &[FieldRef]) -> Result<FieldRef> {
348    assert!(!input_fields.is_empty());
349    let expr_field = input_fields.first().unwrap_or(&NULL_FIELD);
350
351    // Handles the most common case where NULL is unexpected
352    if !expr_field.data_type().is_null() {
353        return Ok(expr_field.as_ref().clone().with_nullable(true).into());
354    }
355
356    let default_value_field = input_fields.get(2).unwrap_or(&NULL_FIELD);
357    Ok(default_value_field
358        .as_ref()
359        .clone()
360        .with_nullable(true)
361        .into())
362}
363
364/// Handles type coercion and null value refinement for default value
365/// argument depending on the data type of the input expression.
366fn parse_default_value(
367    input_exprs: &[Arc<dyn PhysicalExpr>],
368    input_types: &[FieldRef],
369) -> Result<ScalarValue> {
370    let expr_field = parse_expr_field(input_types)?;
371    let unparsed = get_scalar_value_from_args(input_exprs, 2)?;
372
373    unparsed
374        .filter(|v| !v.data_type().is_null())
375        .map(|v| v.cast_to(expr_field.data_type()))
376        .unwrap_or_else(|| ScalarValue::try_from(expr_field.data_type()))
377}
378
379#[derive(Debug)]
380struct WindowShiftEvaluator {
381    shift_offset: i64,
382    default_value: ScalarValue,
383    ignore_nulls: bool,
384    // VecDeque contains offset values that between non-null entries
385    non_null_offsets: VecDeque<usize>,
386}
387
388impl WindowShiftEvaluator {
389    fn is_lag(&self) -> bool {
390        // Mode is LAG, when shift_offset is positive
391        self.shift_offset > 0
392    }
393}
394
395// implement ignore null for evaluate_all
396fn evaluate_all_with_ignore_null(
397    array: &ArrayRef,
398    offset: i64,
399    default_value: &ScalarValue,
400    is_lag: bool,
401) -> Result<ArrayRef, DataFusionError> {
402    let valid_indices: Vec<usize> =
403        array.nulls().unwrap().valid_indices().collect::<Vec<_>>();
404    let direction = !is_lag;
405    let new_array_results: Result<Vec<_>, DataFusionError> = (0..array.len())
406        .map(|id| {
407            let result_index = match valid_indices.binary_search(&id) {
408                Ok(pos) => if direction {
409                    pos.checked_add(offset as usize)
410                } else {
411                    pos.checked_sub(offset.unsigned_abs() as usize)
412                }
413                .and_then(|new_pos| {
414                    if new_pos < valid_indices.len() {
415                        Some(valid_indices[new_pos])
416                    } else {
417                        None
418                    }
419                }),
420                Err(pos) => if direction {
421                    pos.checked_add(offset as usize)
422                } else if pos > 0 {
423                    pos.checked_sub(offset.unsigned_abs() as usize)
424                } else {
425                    None
426                }
427                .and_then(|new_pos| {
428                    if new_pos < valid_indices.len() {
429                        Some(valid_indices[new_pos])
430                    } else {
431                        None
432                    }
433                }),
434            };
435
436            match result_index {
437                Some(index) => ScalarValue::try_from_array(array, index),
438                None => Ok(default_value.clone()),
439            }
440        })
441        .collect();
442
443    let new_array = new_array_results?;
444    ScalarValue::iter_to_array(new_array)
445}
446// TODO: change the original arrow::compute::kernels::window::shift impl to support an optional default value
447fn shift_with_default_value(
448    array: &ArrayRef,
449    offset: i64,
450    default_value: &ScalarValue,
451) -> Result<ArrayRef> {
452    use datafusion_common::arrow::compute::concat;
453
454    let value_len = array.len() as i64;
455    if offset == 0 {
456        Ok(Arc::clone(array))
457    } else if offset == i64::MIN || offset.abs() >= value_len {
458        default_value.to_array_of_size(value_len as usize)
459    } else {
460        let slice_offset = (-offset).clamp(0, value_len) as usize;
461        let length = array.len() - offset.unsigned_abs() as usize;
462        let slice = array.slice(slice_offset, length);
463
464        // Generate array with remaining `null` items
465        let nulls = offset.unsigned_abs() as usize;
466        let default_values = default_value.to_array_of_size(nulls)?;
467
468        // Concatenate both arrays, add nulls after if shift > 0 else before
469        if offset > 0 {
470            concat(&[default_values.as_ref(), slice.as_ref()])
471                .map_err(|e| arrow_datafusion_err!(e))
472        } else {
473            concat(&[slice.as_ref(), default_values.as_ref()])
474                .map_err(|e| arrow_datafusion_err!(e))
475        }
476    }
477}
478
479impl PartitionEvaluator for WindowShiftEvaluator {
480    fn get_range(&self, idx: usize, n_rows: usize) -> Result<Range<usize>> {
481        if self.is_lag() {
482            let start = if self.non_null_offsets.len() == self.shift_offset as usize {
483                // How many rows needed previous than the current row to get necessary lag result
484                let offset: usize = self.non_null_offsets.iter().sum();
485                idx.saturating_sub(offset)
486            } else if !self.ignore_nulls {
487                let offset = self.shift_offset as usize;
488                idx.saturating_sub(offset)
489            } else {
490                0
491            };
492            let end = idx + 1;
493            Ok(Range { start, end })
494        } else {
495            let end = if self.non_null_offsets.len() == (-self.shift_offset) as usize {
496                // How many rows needed further than the current row to get necessary lead result
497                let offset: usize = self.non_null_offsets.iter().sum();
498                min(idx + offset + 1, n_rows)
499            } else if !self.ignore_nulls {
500                let offset = (-self.shift_offset) as usize;
501                min(idx + offset, n_rows)
502            } else {
503                n_rows
504            };
505            Ok(Range { start: idx, end })
506        }
507    }
508
509    fn is_causal(&self) -> bool {
510        // Lagging windows are causal by definition:
511        self.is_lag()
512    }
513
514    fn evaluate(
515        &mut self,
516        values: &[ArrayRef],
517        range: &Range<usize>,
518    ) -> Result<ScalarValue> {
519        let array = &values[0];
520        let len = array.len();
521
522        // LAG mode
523        let i = if self.is_lag() {
524            (range.end as i64 - self.shift_offset - 1) as usize
525        } else {
526            // LEAD mode
527            (range.start as i64 - self.shift_offset) as usize
528        };
529
530        let mut idx: Option<usize> = if i < len { Some(i) } else { None };
531
532        // LAG with IGNORE NULLS calculated as the current row index - offset, but only for non-NULL rows
533        // If current row index points to NULL value the row is NOT counted
534        if self.ignore_nulls && self.is_lag() {
535            // LAG when NULLS are ignored.
536            // Find the nonNULL row index that shifted by offset comparing to current row index
537            idx = if self.non_null_offsets.len() == self.shift_offset as usize {
538                let total_offset: usize = self.non_null_offsets.iter().sum();
539                Some(range.end - 1 - total_offset)
540            } else {
541                None
542            };
543
544            // Keep track of offset values between non-null entries
545            if array.is_valid(range.end - 1) {
546                // Non-null add new offset
547                self.non_null_offsets.push_back(1);
548                if self.non_null_offsets.len() > self.shift_offset as usize {
549                    // WE do not need to keep track of more than `lag number of offset` values.
550                    self.non_null_offsets.pop_front();
551                }
552            } else if !self.non_null_offsets.is_empty() {
553                // Entry is null, increment offset value of the last entry.
554                let end_idx = self.non_null_offsets.len() - 1;
555                self.non_null_offsets[end_idx] += 1;
556            }
557        } else if self.ignore_nulls && !self.is_lag() {
558            // LEAD when NULLS are ignored.
559            // Stores the necessary non-null entry number further than the current row.
560            let non_null_row_count = (-self.shift_offset) as usize;
561
562            if self.non_null_offsets.is_empty() {
563                // When empty, fill non_null offsets with the data further than the current row.
564                let mut offset_val = 1;
565                for idx in range.start + 1..range.end {
566                    if array.is_valid(idx) {
567                        self.non_null_offsets.push_back(offset_val);
568                        offset_val = 1;
569                    } else {
570                        offset_val += 1;
571                    }
572                    // It is enough to keep track of `non_null_row_count + 1` non-null offset.
573                    // further data is unnecessary for the result.
574                    if self.non_null_offsets.len() == non_null_row_count + 1 {
575                        break;
576                    }
577                }
578            } else if range.end < len && array.is_valid(range.end) {
579                // Update `non_null_offsets` with the new end data.
580                if array.is_valid(range.end) {
581                    // When non-null, append a new offset.
582                    self.non_null_offsets.push_back(1);
583                } else {
584                    // When null, increment offset count of the last entry
585                    let last_idx = self.non_null_offsets.len() - 1;
586                    self.non_null_offsets[last_idx] += 1;
587                }
588            }
589
590            // Find the nonNULL row index that shifted by offset comparing to current row index
591            idx = if self.non_null_offsets.len() >= non_null_row_count {
592                let total_offset: usize =
593                    self.non_null_offsets.iter().take(non_null_row_count).sum();
594                Some(range.start + total_offset)
595            } else {
596                None
597            };
598            // Prune `self.non_null_offsets` from the start. so that at next iteration
599            // start of the `self.non_null_offsets` matches with current row.
600            if !self.non_null_offsets.is_empty() {
601                self.non_null_offsets[0] -= 1;
602                if self.non_null_offsets[0] == 0 {
603                    // When offset is 0. Remove it.
604                    self.non_null_offsets.pop_front();
605                }
606            }
607        }
608
609        // Set the default value if
610        // - index is out of window bounds
611        // OR
612        // - ignore nulls mode and current value is null and is within window bounds
613        // .unwrap() is safe here as there is a none check in front
614        #[allow(clippy::unnecessary_unwrap)]
615        if !(idx.is_none() || (self.ignore_nulls && array.is_null(idx.unwrap()))) {
616            ScalarValue::try_from_array(array, idx.unwrap())
617        } else {
618            Ok(self.default_value.clone())
619        }
620    }
621
622    fn evaluate_all(
623        &mut self,
624        values: &[ArrayRef],
625        _num_rows: usize,
626    ) -> Result<ArrayRef> {
627        // LEAD, LAG window functions take single column, values will have size 1
628        let value = &values[0];
629        if !self.ignore_nulls {
630            shift_with_default_value(value, self.shift_offset, &self.default_value)
631        } else {
632            evaluate_all_with_ignore_null(
633                value,
634                self.shift_offset,
635                &self.default_value,
636                self.is_lag(),
637            )
638        }
639    }
640
641    fn supports_bounded_execution(&self) -> bool {
642        true
643    }
644}
645
646#[cfg(test)]
647mod tests {
648    use super::*;
649    use arrow::array::*;
650    use datafusion_common::cast::as_int32_array;
651    use datafusion_physical_expr::expressions::{Column, Literal};
652    use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
653
654    fn test_i32_result(
655        expr: WindowShift,
656        partition_evaluator_args: PartitionEvaluatorArgs,
657        expected: Int32Array,
658    ) -> Result<()> {
659        let arr: ArrayRef = Arc::new(Int32Array::from(vec![1, -2, 3, -4, 5, -6, 7, 8]));
660        let values = vec![arr];
661        let num_rows = values.len();
662        let result = expr
663            .partition_evaluator(partition_evaluator_args)?
664            .evaluate_all(&values, num_rows)?;
665        let result = as_int32_array(&result)?;
666        assert_eq!(expected, *result);
667        Ok(())
668    }
669
670    #[test]
671    fn lead_lag_get_range() -> Result<()> {
672        // LAG(2)
673        let lag_fn = WindowShiftEvaluator {
674            shift_offset: 2,
675            default_value: ScalarValue::Null,
676            ignore_nulls: false,
677            non_null_offsets: Default::default(),
678        };
679        assert_eq!(lag_fn.get_range(6, 10)?, Range { start: 4, end: 7 });
680        assert_eq!(lag_fn.get_range(0, 10)?, Range { start: 0, end: 1 });
681
682        // LAG(2 ignore nulls)
683        let lag_fn = WindowShiftEvaluator {
684            shift_offset: 2,
685            default_value: ScalarValue::Null,
686            ignore_nulls: true,
687            // models data received [<Some>, <Some>, <Some>, NULL, <Some>, NULL, <current row>, ...]
688            non_null_offsets: vec![2, 2].into(), // [1, 1, 2, 2] actually, just last 2 is used
689        };
690        assert_eq!(lag_fn.get_range(6, 10)?, Range { start: 2, end: 7 });
691
692        // LEAD(2)
693        let lead_fn = WindowShiftEvaluator {
694            shift_offset: -2,
695            default_value: ScalarValue::Null,
696            ignore_nulls: false,
697            non_null_offsets: Default::default(),
698        };
699        assert_eq!(lead_fn.get_range(6, 10)?, Range { start: 6, end: 8 });
700        assert_eq!(lead_fn.get_range(9, 10)?, Range { start: 9, end: 10 });
701
702        // LEAD(2 ignore nulls)
703        let lead_fn = WindowShiftEvaluator {
704            shift_offset: -2,
705            default_value: ScalarValue::Null,
706            ignore_nulls: true,
707            // models data received [..., <current row>, NULL, <Some>, NULL, <Some>, ..]
708            non_null_offsets: vec![2, 2].into(),
709        };
710        assert_eq!(lead_fn.get_range(4, 10)?, Range { start: 4, end: 9 });
711
712        Ok(())
713    }
714
715    #[test]
716    fn test_lead_window_shift() -> Result<()> {
717        let expr = Arc::new(Column::new("c3", 0)) as Arc<dyn PhysicalExpr>;
718
719        test_i32_result(
720            WindowShift::lead(),
721            PartitionEvaluatorArgs::new(
722                &[expr],
723                &[Field::new("f", DataType::Int32, true).into()],
724                false,
725                false,
726            ),
727            [
728                Some(-2),
729                Some(3),
730                Some(-4),
731                Some(5),
732                Some(-6),
733                Some(7),
734                Some(8),
735                None,
736            ]
737            .iter()
738            .collect::<Int32Array>(),
739        )
740    }
741
742    #[test]
743    fn test_lag_window_shift() -> Result<()> {
744        let expr = Arc::new(Column::new("c3", 0)) as Arc<dyn PhysicalExpr>;
745
746        test_i32_result(
747            WindowShift::lag(),
748            PartitionEvaluatorArgs::new(
749                &[expr],
750                &[Field::new("f", DataType::Int32, true).into()],
751                false,
752                false,
753            ),
754            [
755                None,
756                Some(1),
757                Some(-2),
758                Some(3),
759                Some(-4),
760                Some(5),
761                Some(-6),
762                Some(7),
763            ]
764            .iter()
765            .collect::<Int32Array>(),
766        )
767    }
768
769    #[test]
770    fn test_lag_with_default() -> Result<()> {
771        let expr = Arc::new(Column::new("c3", 0)) as Arc<dyn PhysicalExpr>;
772        let shift_offset =
773            Arc::new(Literal::new(ScalarValue::Int32(Some(1)))) as Arc<dyn PhysicalExpr>;
774        let default_value = Arc::new(Literal::new(ScalarValue::Int32(Some(100))))
775            as Arc<dyn PhysicalExpr>;
776
777        let input_exprs = &[expr, shift_offset, default_value];
778        let input_fields = [DataType::Int32, DataType::Int32, DataType::Int32]
779            .into_iter()
780            .map(|d| Field::new("f", d, true))
781            .map(Arc::new)
782            .collect::<Vec<_>>();
783
784        test_i32_result(
785            WindowShift::lag(),
786            PartitionEvaluatorArgs::new(input_exprs, &input_fields, false, false),
787            [
788                Some(100),
789                Some(1),
790                Some(-2),
791                Some(3),
792                Some(-4),
793                Some(5),
794                Some(-6),
795                Some(7),
796            ]
797            .iter()
798            .collect::<Int32Array>(),
799        )
800    }
801}