1use std::cmp::Ordering;
19use std::fmt::{Debug, Formatter};
20use std::mem::{size_of, size_of_val};
21use std::sync::Arc;
22
23use arrow::array::{
24 downcast_integer, ArrowNumericType, BooleanArray, ListArray, PrimitiveArray,
25 PrimitiveBuilder,
26};
27use arrow::buffer::{OffsetBuffer, ScalarBuffer};
28use arrow::{
29 array::{ArrayRef, AsArray},
30 datatypes::{
31 DataType, Decimal128Type, Decimal256Type, Field, Float16Type, Float32Type,
32 Float64Type,
33 },
34};
35
36use arrow::array::Array;
37use arrow::array::ArrowNativeTypeOp;
38use arrow::datatypes::{ArrowNativeType, ArrowPrimitiveType, FieldRef};
39
40use datafusion_common::{
41 internal_datafusion_err, internal_err, DataFusionError, HashSet, Result, ScalarValue,
42};
43use datafusion_expr::function::StateFieldsArgs;
44use datafusion_expr::{
45 function::AccumulatorArgs, utils::format_state_name, Accumulator, AggregateUDFImpl,
46 Documentation, Signature, Volatility,
47};
48use datafusion_expr::{EmitTo, GroupsAccumulator};
49use datafusion_functions_aggregate_common::aggregate::groups_accumulator::accumulate::accumulate;
50use datafusion_functions_aggregate_common::aggregate::groups_accumulator::nulls::filtered_null_mask;
51use datafusion_functions_aggregate_common::utils::Hashable;
52use datafusion_macros::user_doc;
53
54make_udaf_expr_and_func!(
55 Median,
56 median,
57 expression,
58 "Computes the median of a set of numbers",
59 median_udaf
60);
61
62#[user_doc(
63 doc_section(label = "General Functions"),
64 description = "Returns the median value in the specified column.",
65 syntax_example = "median(expression)",
66 sql_example = r#"```sql
67> SELECT median(column_name) FROM table_name;
68+----------------------+
69| median(column_name) |
70+----------------------+
71| 45.5 |
72+----------------------+
73```"#,
74 standard_argument(name = "expression", prefix = "The")
75)]
76pub struct Median {
85 signature: Signature,
86}
87
88impl Debug for Median {
89 fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
90 f.debug_struct("Median")
91 .field("name", &self.name())
92 .field("signature", &self.signature)
93 .finish()
94 }
95}
96
97impl Default for Median {
98 fn default() -> Self {
99 Self::new()
100 }
101}
102
103impl Median {
104 pub fn new() -> Self {
105 Self {
106 signature: Signature::numeric(1, Volatility::Immutable),
107 }
108 }
109}
110
111impl AggregateUDFImpl for Median {
112 fn as_any(&self) -> &dyn std::any::Any {
113 self
114 }
115
116 fn name(&self) -> &str {
117 "median"
118 }
119
120 fn signature(&self) -> &Signature {
121 &self.signature
122 }
123
124 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
125 Ok(arg_types[0].clone())
126 }
127
128 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
129 let field = Field::new_list_field(args.input_fields[0].data_type().clone(), true);
131 let state_name = if args.is_distinct {
132 "distinct_median"
133 } else {
134 "median"
135 };
136
137 Ok(vec![Field::new(
138 format_state_name(args.name, state_name),
139 DataType::List(Arc::new(field)),
140 true,
141 )
142 .into()])
143 }
144
145 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
146 macro_rules! helper {
147 ($t:ty, $dt:expr) => {
148 if acc_args.is_distinct {
149 Ok(Box::new(DistinctMedianAccumulator::<$t> {
150 data_type: $dt.clone(),
151 distinct_values: HashSet::new(),
152 }))
153 } else {
154 Ok(Box::new(MedianAccumulator::<$t> {
155 data_type: $dt.clone(),
156 all_values: vec![],
157 }))
158 }
159 };
160 }
161
162 let dt = acc_args.exprs[0].data_type(acc_args.schema)?;
163 downcast_integer! {
164 dt => (helper, dt),
165 DataType::Float16 => helper!(Float16Type, dt),
166 DataType::Float32 => helper!(Float32Type, dt),
167 DataType::Float64 => helper!(Float64Type, dt),
168 DataType::Decimal128(_, _) => helper!(Decimal128Type, dt),
169 DataType::Decimal256(_, _) => helper!(Decimal256Type, dt),
170 _ => Err(DataFusionError::NotImplemented(format!(
171 "MedianAccumulator not supported for {} with {}",
172 acc_args.name,
173 dt,
174 ))),
175 }
176 }
177
178 fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
179 !args.is_distinct
180 }
181
182 fn create_groups_accumulator(
183 &self,
184 args: AccumulatorArgs,
185 ) -> Result<Box<dyn GroupsAccumulator>> {
186 let num_args = args.exprs.len();
187 if num_args != 1 {
188 return internal_err!(
189 "median should only have 1 arg, but found num args:{}",
190 args.exprs.len()
191 );
192 }
193
194 let dt = args.exprs[0].data_type(args.schema)?;
195
196 macro_rules! helper {
197 ($t:ty, $dt:expr) => {
198 Ok(Box::new(MedianGroupsAccumulator::<$t>::new($dt)))
199 };
200 }
201
202 downcast_integer! {
203 dt => (helper, dt),
204 DataType::Float16 => helper!(Float16Type, dt),
205 DataType::Float32 => helper!(Float32Type, dt),
206 DataType::Float64 => helper!(Float64Type, dt),
207 DataType::Decimal128(_, _) => helper!(Decimal128Type, dt),
208 DataType::Decimal256(_, _) => helper!(Decimal256Type, dt),
209 _ => Err(DataFusionError::NotImplemented(format!(
210 "MedianGroupsAccumulator not supported for {} with {}",
211 args.name,
212 dt,
213 ))),
214 }
215 }
216
217 fn documentation(&self) -> Option<&Documentation> {
218 self.doc()
219 }
220}
221
222struct MedianAccumulator<T: ArrowNumericType> {
230 data_type: DataType,
231 all_values: Vec<T::Native>,
232}
233
234impl<T: ArrowNumericType> Debug for MedianAccumulator<T> {
235 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
236 write!(f, "MedianAccumulator({})", self.data_type)
237 }
238}
239
240impl<T: ArrowNumericType> Accumulator for MedianAccumulator<T> {
241 fn state(&mut self) -> Result<Vec<ScalarValue>> {
242 let offsets =
246 OffsetBuffer::new(ScalarBuffer::from(vec![0, self.all_values.len() as i32]));
247
248 let values_array = PrimitiveArray::<T>::new(
250 ScalarBuffer::from(std::mem::take(&mut self.all_values)),
251 None,
252 )
253 .with_data_type(self.data_type.clone());
254
255 let list_array = ListArray::new(
257 Arc::new(Field::new_list_field(self.data_type.clone(), true)),
258 offsets,
259 Arc::new(values_array),
260 None,
261 );
262
263 Ok(vec![ScalarValue::List(Arc::new(list_array))])
264 }
265
266 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
267 let values = values[0].as_primitive::<T>();
268 self.all_values.reserve(values.len() - values.null_count());
269 self.all_values.extend(values.iter().flatten());
270 Ok(())
271 }
272
273 fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
274 let array = states[0].as_list::<i32>();
275 for v in array.iter().flatten() {
276 self.update_batch(&[v])?
277 }
278 Ok(())
279 }
280
281 fn evaluate(&mut self) -> Result<ScalarValue> {
282 let d = std::mem::take(&mut self.all_values);
283 let median = calculate_median::<T>(d);
284 ScalarValue::new_primitive::<T>(median, &self.data_type)
285 }
286
287 fn size(&self) -> usize {
288 size_of_val(self) + self.all_values.capacity() * size_of::<T::Native>()
289 }
290}
291
292#[derive(Debug)]
300struct MedianGroupsAccumulator<T: ArrowNumericType + Send> {
301 data_type: DataType,
302 group_values: Vec<Vec<T::Native>>,
303}
304
305impl<T: ArrowNumericType + Send> MedianGroupsAccumulator<T> {
306 pub fn new(data_type: DataType) -> Self {
307 Self {
308 data_type,
309 group_values: Vec::new(),
310 }
311 }
312}
313
314impl<T: ArrowNumericType + Send> GroupsAccumulator for MedianGroupsAccumulator<T> {
315 fn update_batch(
316 &mut self,
317 values: &[ArrayRef],
318 group_indices: &[usize],
319 opt_filter: Option<&BooleanArray>,
320 total_num_groups: usize,
321 ) -> Result<()> {
322 assert_eq!(values.len(), 1, "single argument to update_batch");
323 let values = values[0].as_primitive::<T>();
324
325 self.group_values.resize(total_num_groups, Vec::new());
327 accumulate(
328 group_indices,
329 values,
330 opt_filter,
331 |group_index, new_value| {
332 self.group_values[group_index].push(new_value);
333 },
334 );
335
336 Ok(())
337 }
338
339 fn merge_batch(
340 &mut self,
341 values: &[ArrayRef],
342 group_indices: &[usize],
343 _opt_filter: Option<&BooleanArray>,
345 total_num_groups: usize,
346 ) -> Result<()> {
347 assert_eq!(values.len(), 1, "one argument to merge_batch");
348
349 let input_group_values = values[0].as_list::<i32>();
370
371 self.group_values.resize(total_num_groups, Vec::new());
373
374 group_indices
379 .iter()
380 .zip(input_group_values.iter())
381 .for_each(|(&group_index, values_opt)| {
382 if let Some(values) = values_opt {
383 let values = values.as_primitive::<T>();
384 self.group_values[group_index].extend(values.values().iter());
385 }
386 });
387
388 Ok(())
389 }
390
391 fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
392 let emit_group_values = emit_to.take_needed(&mut self.group_values);
394
395 let mut offsets = Vec::with_capacity(self.group_values.len() + 1);
397 offsets.push(0);
398 let mut cur_len = 0_i32;
399 for group_value in &emit_group_values {
400 cur_len += group_value.len() as i32;
401 offsets.push(cur_len);
402 }
403 let offsets = OffsetBuffer::new(ScalarBuffer::from(offsets));
411
412 let flatten_group_values =
414 emit_group_values.into_iter().flatten().collect::<Vec<_>>();
415 let group_values_array =
416 PrimitiveArray::<T>::new(ScalarBuffer::from(flatten_group_values), None)
417 .with_data_type(self.data_type.clone());
418
419 let result_list_array = ListArray::new(
421 Arc::new(Field::new_list_field(self.data_type.clone(), true)),
422 offsets,
423 Arc::new(group_values_array),
424 None,
425 );
426
427 Ok(vec![Arc::new(result_list_array)])
428 }
429
430 fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
431 let emit_group_values = emit_to.take_needed(&mut self.group_values);
433
434 let mut evaluate_result_builder =
436 PrimitiveBuilder::<T>::new().with_data_type(self.data_type.clone());
437 for values in emit_group_values {
438 let median = calculate_median::<T>(values);
439 evaluate_result_builder.append_option(median);
440 }
441
442 Ok(Arc::new(evaluate_result_builder.finish()))
443 }
444
445 fn convert_to_state(
446 &self,
447 values: &[ArrayRef],
448 opt_filter: Option<&BooleanArray>,
449 ) -> Result<Vec<ArrayRef>> {
450 assert_eq!(values.len(), 1, "one argument to merge_batch");
451
452 let input_array = values[0].as_primitive::<T>();
453
454 let values = PrimitiveArray::<T>::new(input_array.values().clone(), None)
463 .with_data_type(self.data_type.clone());
464
465 let offset_end = i32::try_from(input_array.len()).map_err(|e| {
467 internal_datafusion_err!(
468 "cast array_len to i32 failed in convert_to_state of group median, err:{e:?}"
469 )
470 })?;
471 let offsets = (0..=offset_end).collect::<Vec<_>>();
472 let offsets = unsafe { OffsetBuffer::new_unchecked(ScalarBuffer::from(offsets)) };
474
475 let nulls = filtered_null_mask(opt_filter, input_array);
477
478 let converted_list_array = ListArray::new(
479 Arc::new(Field::new_list_field(self.data_type.clone(), true)),
480 offsets,
481 Arc::new(values),
482 nulls,
483 );
484
485 Ok(vec![Arc::new(converted_list_array)])
486 }
487
488 fn supports_convert_to_state(&self) -> bool {
489 true
490 }
491
492 fn size(&self) -> usize {
493 self.group_values
494 .iter()
495 .map(|values| values.capacity() * size_of::<T>())
496 .sum::<usize>()
497 + self.group_values.capacity() * size_of::<Vec<T>>()
499 }
500}
501
502struct DistinctMedianAccumulator<T: ArrowNumericType> {
510 data_type: DataType,
511 distinct_values: HashSet<Hashable<T::Native>>,
512}
513
514impl<T: ArrowNumericType> Debug for DistinctMedianAccumulator<T> {
515 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
516 write!(f, "DistinctMedianAccumulator({})", self.data_type)
517 }
518}
519
520impl<T: ArrowNumericType> Accumulator for DistinctMedianAccumulator<T> {
521 fn state(&mut self) -> Result<Vec<ScalarValue>> {
522 let all_values = self
523 .distinct_values
524 .iter()
525 .map(|x| ScalarValue::new_primitive::<T>(Some(x.0), &self.data_type))
526 .collect::<Result<Vec<_>>>()?;
527
528 let arr = ScalarValue::new_list_nullable(&all_values, &self.data_type);
529 Ok(vec![ScalarValue::List(arr)])
530 }
531
532 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
533 if values.is_empty() {
534 return Ok(());
535 }
536
537 let array = values[0].as_primitive::<T>();
538 match array.nulls().filter(|x| x.null_count() > 0) {
539 Some(n) => {
540 for idx in n.valid_indices() {
541 self.distinct_values.insert(Hashable(array.value(idx)));
542 }
543 }
544 None => array.values().iter().for_each(|x| {
545 self.distinct_values.insert(Hashable(*x));
546 }),
547 }
548 Ok(())
549 }
550
551 fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
552 let array = states[0].as_list::<i32>();
553 for v in array.iter().flatten() {
554 self.update_batch(&[v])?
555 }
556 Ok(())
557 }
558
559 fn evaluate(&mut self) -> Result<ScalarValue> {
560 let d = std::mem::take(&mut self.distinct_values)
561 .into_iter()
562 .map(|v| v.0)
563 .collect::<Vec<_>>();
564 let median = calculate_median::<T>(d);
565 ScalarValue::new_primitive::<T>(median, &self.data_type)
566 }
567
568 fn size(&self) -> usize {
569 size_of_val(self) + self.distinct_values.capacity() * size_of::<T::Native>()
570 }
571}
572
573fn slice_max<T>(array: &[T::Native]) -> T::Native
575where
576 T: ArrowPrimitiveType,
577 T::Native: PartialOrd, {
579 debug_assert!(!array.is_empty());
581 *array
583 .iter()
584 .max_by(|x, y| x.partial_cmp(y).unwrap_or(Ordering::Less))
585 .unwrap()
586}
587
588fn calculate_median<T: ArrowNumericType>(
589 mut values: Vec<T::Native>,
590) -> Option<T::Native> {
591 let cmp = |x: &T::Native, y: &T::Native| x.compare(*y);
592
593 let len = values.len();
594 if len == 0 {
595 None
596 } else if len % 2 == 0 {
597 let (low, high, _) = values.select_nth_unstable_by(len / 2, cmp);
598 let left_max = slice_max::<T>(low);
600 let median = left_max
601 .add_wrapping(*high)
602 .div_wrapping(T::Native::usize_as(2));
603 Some(median)
604 } else {
605 let (_, median, _) = values.select_nth_unstable_by(len / 2, cmp);
606 Some(*median)
607 }
608}