datafusion_functions_aggregate/
lib.rs1#![doc(
19 html_logo_url = "https://raw.githubusercontent.com/apache/datafusion/19fe44cf2f30cbdd63d4a4f52c74055163c6cc38/docs/logos/standalone_logo/logo_original.svg",
20 html_favicon_url = "https://raw.githubusercontent.com/apache/datafusion/19fe44cf2f30cbdd63d4a4f52c74055163c6cc38/docs/logos/standalone_logo/logo_original.svg"
21)]
22#![cfg_attr(docsrs, feature(doc_cfg))]
23#![deny(clippy::clone_on_ref_ptr)]
26
27#[macro_use]
65pub mod macros;
66
67pub mod approx_distinct;
68pub mod approx_median;
69pub mod approx_percentile_cont;
70pub mod approx_percentile_cont_with_weight;
71pub mod array_agg;
72pub mod average;
73pub mod bit_and_or_xor;
74pub mod bool_and_or;
75pub mod correlation;
76pub mod count;
77pub mod covariance;
78pub mod first_last;
79pub mod grouping;
80pub mod hyperloglog;
81pub mod median;
82pub mod min_max;
83pub mod nth_value;
84pub mod percentile_cont;
85pub mod regr;
86pub mod stddev;
87pub mod string_agg;
88pub mod sum;
89pub mod variance;
90
91pub mod planner;
92mod utils;
93
94use crate::approx_percentile_cont::approx_percentile_cont_udaf;
95use crate::approx_percentile_cont_with_weight::approx_percentile_cont_with_weight_udaf;
96use datafusion_common::Result;
97use datafusion_execution::FunctionRegistry;
98use datafusion_expr::AggregateUDF;
99use log::debug;
100use std::sync::Arc;
101
102pub mod expr_fn {
104 pub use super::approx_distinct::approx_distinct;
105 pub use super::approx_median::approx_median;
106 pub use super::approx_percentile_cont::approx_percentile_cont;
107 pub use super::approx_percentile_cont_with_weight::approx_percentile_cont_with_weight;
108 pub use super::array_agg::array_agg;
109 pub use super::average::avg;
110 pub use super::average::avg_distinct;
111 pub use super::bit_and_or_xor::bit_and;
112 pub use super::bit_and_or_xor::bit_or;
113 pub use super::bit_and_or_xor::bit_xor;
114 pub use super::bool_and_or::bool_and;
115 pub use super::bool_and_or::bool_or;
116 pub use super::correlation::corr;
117 pub use super::count::count;
118 pub use super::count::count_distinct;
119 pub use super::covariance::covar_pop;
120 pub use super::covariance::covar_samp;
121 pub use super::first_last::first_value;
122 pub use super::first_last::last_value;
123 pub use super::grouping::grouping;
124 pub use super::median::median;
125 pub use super::min_max::max;
126 pub use super::min_max::min;
127 pub use super::nth_value::nth_value;
128 pub use super::percentile_cont::percentile_cont;
129 pub use super::regr::regr_avgx;
130 pub use super::regr::regr_avgy;
131 pub use super::regr::regr_count;
132 pub use super::regr::regr_intercept;
133 pub use super::regr::regr_r2;
134 pub use super::regr::regr_slope;
135 pub use super::regr::regr_sxx;
136 pub use super::regr::regr_sxy;
137 pub use super::regr::regr_syy;
138 pub use super::stddev::stddev;
139 pub use super::stddev::stddev_pop;
140 pub use super::sum::sum;
141 pub use super::sum::sum_distinct;
142 pub use super::variance::var_pop;
143 pub use super::variance::var_sample;
144}
145
146pub fn all_default_aggregate_functions() -> Vec<Arc<AggregateUDF>> {
148 vec![
149 array_agg::array_agg_udaf(),
150 first_last::first_value_udaf(),
151 first_last::last_value_udaf(),
152 covariance::covar_samp_udaf(),
153 covariance::covar_pop_udaf(),
154 correlation::corr_udaf(),
155 sum::sum_udaf(),
156 min_max::max_udaf(),
157 min_max::min_udaf(),
158 median::median_udaf(),
159 count::count_udaf(),
160 regr::regr_slope_udaf(),
161 regr::regr_intercept_udaf(),
162 regr::regr_count_udaf(),
163 regr::regr_r2_udaf(),
164 regr::regr_avgx_udaf(),
165 regr::regr_avgy_udaf(),
166 regr::regr_sxx_udaf(),
167 regr::regr_syy_udaf(),
168 regr::regr_sxy_udaf(),
169 variance::var_samp_udaf(),
170 variance::var_pop_udaf(),
171 stddev::stddev_udaf(),
172 stddev::stddev_pop_udaf(),
173 approx_median::approx_median_udaf(),
174 approx_distinct::approx_distinct_udaf(),
175 approx_percentile_cont_udaf(),
176 approx_percentile_cont_with_weight_udaf(),
177 percentile_cont::percentile_cont_udaf(),
178 string_agg::string_agg_udaf(),
179 bit_and_or_xor::bit_and_udaf(),
180 bit_and_or_xor::bit_or_udaf(),
181 bit_and_or_xor::bit_xor_udaf(),
182 bool_and_or::bool_and_udaf(),
183 bool_and_or::bool_or_udaf(),
184 average::avg_udaf(),
185 grouping::grouping_udaf(),
186 nth_value::nth_value_udaf(),
187 ]
188}
189
190pub fn register_all(registry: &mut dyn FunctionRegistry) -> Result<()> {
192 let functions: Vec<Arc<AggregateUDF>> = all_default_aggregate_functions();
193
194 functions.into_iter().try_for_each(|udf| {
195 let existing_udaf = registry.register_udaf(udf)?;
196 if let Some(existing_udaf) = existing_udaf {
197 debug!("Overwrite existing UDAF: {}", existing_udaf.name());
198 }
199 Ok(()) as Result<()>
200 })?;
201
202 Ok(())
203}
204
205#[cfg(test)]
206mod tests {
207 use crate::all_default_aggregate_functions;
208 use datafusion_common::Result;
209 use std::collections::HashSet;
210
211 #[test]
212 fn test_no_duplicate_name() -> Result<()> {
213 let mut names = HashSet::new();
214 for func in all_default_aggregate_functions() {
215 assert!(
216 names.insert(func.name().to_string().to_lowercase()),
217 "duplicate function name: {}",
218 func.name()
219 );
220 for alias in func.aliases() {
221 assert!(
222 names.insert(alias.to_string().to_lowercase()),
223 "duplicate function name: {alias}"
224 );
225 }
226 }
227 Ok(())
228 }
229}