datafusion_functions_aggregate/
approx_distinct.rs1use crate::hyperloglog::HyperLogLog;
21use arrow::array::{BinaryArray, StringViewArray};
22use arrow::array::{
23 GenericBinaryArray, GenericStringArray, OffsetSizeTrait, PrimitiveArray,
24};
25use arrow::datatypes::{
26 ArrowPrimitiveType, Date32Type, Date64Type, FieldRef, Int16Type, Int32Type,
27 Int64Type, Int8Type, Time32MillisecondType, Time32SecondType, Time64MicrosecondType,
28 Time64NanosecondType, TimeUnit, TimestampMicrosecondType, TimestampMillisecondType,
29 TimestampNanosecondType, TimestampSecondType, UInt16Type, UInt32Type, UInt64Type,
30 UInt8Type,
31};
32use arrow::{array::ArrayRef, datatypes::DataType, datatypes::Field};
33use datafusion_common::ScalarValue;
34use datafusion_common::{
35 downcast_value, internal_datafusion_err, internal_err, not_impl_err, DataFusionError,
36 Result,
37};
38use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
39use datafusion_expr::utils::format_state_name;
40use datafusion_expr::{
41 Accumulator, AggregateUDFImpl, Documentation, Signature, Volatility,
42};
43use datafusion_macros::user_doc;
44use std::any::Any;
45use std::fmt::{Debug, Formatter};
46use std::hash::Hash;
47use std::marker::PhantomData;
48
49make_udaf_expr_and_func!(
50 ApproxDistinct,
51 approx_distinct,
52 expression,
53 "approximate number of distinct input values",
54 approx_distinct_udaf
55);
56
57impl<T: Hash> From<&HyperLogLog<T>> for ScalarValue {
58 fn from(v: &HyperLogLog<T>) -> ScalarValue {
59 let values = v.as_ref().to_vec();
60 ScalarValue::Binary(Some(values))
61 }
62}
63
64impl<T: Hash> TryFrom<&[u8]> for HyperLogLog<T> {
65 type Error = DataFusionError;
66 fn try_from(v: &[u8]) -> Result<HyperLogLog<T>> {
67 let arr: [u8; 16384] = v.try_into().map_err(|_| {
68 internal_datafusion_err!("Impossibly got invalid binary array from states")
69 })?;
70 Ok(HyperLogLog::<T>::new_with_registers(arr))
71 }
72}
73
74impl<T: Hash> TryFrom<&ScalarValue> for HyperLogLog<T> {
75 type Error = DataFusionError;
76 fn try_from(v: &ScalarValue) -> Result<HyperLogLog<T>> {
77 if let ScalarValue::Binary(Some(slice)) = v {
78 slice.as_slice().try_into()
79 } else {
80 internal_err!(
81 "Impossibly got invalid scalar value while converting to HyperLogLog"
82 )
83 }
84 }
85}
86
87#[derive(Debug)]
88struct NumericHLLAccumulator<T>
89where
90 T: ArrowPrimitiveType,
91 T::Native: Hash,
92{
93 hll: HyperLogLog<T::Native>,
94}
95
96impl<T> NumericHLLAccumulator<T>
97where
98 T: ArrowPrimitiveType,
99 T::Native: Hash,
100{
101 pub fn new() -> Self {
103 Self {
104 hll: HyperLogLog::new(),
105 }
106 }
107}
108
109#[derive(Debug)]
110struct StringHLLAccumulator<T>
111where
112 T: OffsetSizeTrait,
113{
114 hll: HyperLogLog<String>,
115 phantom_data: PhantomData<T>,
116}
117
118impl<T> StringHLLAccumulator<T>
119where
120 T: OffsetSizeTrait,
121{
122 pub fn new() -> Self {
124 Self {
125 hll: HyperLogLog::new(),
126 phantom_data: PhantomData,
127 }
128 }
129}
130
131#[derive(Debug)]
132struct StringViewHLLAccumulator<T>
133where
134 T: OffsetSizeTrait,
135{
136 hll: HyperLogLog<String>,
137 phantom_data: PhantomData<T>,
138}
139
140impl<T> StringViewHLLAccumulator<T>
141where
142 T: OffsetSizeTrait,
143{
144 pub fn new() -> Self {
145 Self {
146 hll: HyperLogLog::new(),
147 phantom_data: PhantomData,
148 }
149 }
150}
151
152#[derive(Debug)]
153struct BinaryHLLAccumulator<T>
154where
155 T: OffsetSizeTrait,
156{
157 hll: HyperLogLog<Vec<u8>>,
158 phantom_data: PhantomData<T>,
159}
160
161impl<T> BinaryHLLAccumulator<T>
162where
163 T: OffsetSizeTrait,
164{
165 pub fn new() -> Self {
167 Self {
168 hll: HyperLogLog::new(),
169 phantom_data: PhantomData,
170 }
171 }
172}
173
174#[derive(Debug)]
175struct NullHLLAccumulator;
176
177macro_rules! default_accumulator_impl {
178 () => {
179 fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
180 assert_eq!(1, states.len(), "expect only 1 element in the states");
181 let binary_array = downcast_value!(states[0], BinaryArray);
182 for v in binary_array.iter() {
183 let v = v.ok_or_else(|| {
184 internal_datafusion_err!(
185 "Impossibly got empty binary array from states"
186 )
187 })?;
188 let other = v.try_into()?;
189 self.hll.merge(&other);
190 }
191 Ok(())
192 }
193
194 fn state(&mut self) -> Result<Vec<ScalarValue>> {
195 let value = ScalarValue::from(&self.hll);
196 Ok(vec![value])
197 }
198
199 fn evaluate(&mut self) -> Result<ScalarValue> {
200 Ok(ScalarValue::UInt64(Some(self.hll.count() as u64)))
201 }
202
203 fn size(&self) -> usize {
204 std::mem::size_of_val(self)
206 }
207 };
208}
209
210impl<T> Accumulator for BinaryHLLAccumulator<T>
211where
212 T: OffsetSizeTrait,
213{
214 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
215 let array: &GenericBinaryArray<T> =
216 downcast_value!(values[0], GenericBinaryArray, T);
217 self.hll
219 .extend(array.into_iter().flatten().map(|v| v.to_vec()));
220 Ok(())
221 }
222
223 default_accumulator_impl!();
224}
225
226impl<T> Accumulator for StringViewHLLAccumulator<T>
227where
228 T: OffsetSizeTrait,
229{
230 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
231 let array: &StringViewArray = downcast_value!(values[0], StringViewArray);
232 self.hll
234 .extend(array.iter().flatten().map(|s| s.to_string()));
235 Ok(())
236 }
237
238 default_accumulator_impl!();
239}
240
241impl<T> Accumulator for StringHLLAccumulator<T>
242where
243 T: OffsetSizeTrait,
244{
245 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
246 let array: &GenericStringArray<T> =
247 downcast_value!(values[0], GenericStringArray, T);
248 self.hll
250 .extend(array.into_iter().flatten().map(|i| i.to_string()));
251 Ok(())
252 }
253
254 default_accumulator_impl!();
255}
256
257impl<T> Accumulator for NumericHLLAccumulator<T>
258where
259 T: ArrowPrimitiveType + Debug,
260 T::Native: Hash,
261{
262 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
263 let array: &PrimitiveArray<T> = downcast_value!(values[0], PrimitiveArray, T);
264 self.hll.extend(array.into_iter().flatten());
266 Ok(())
267 }
268
269 default_accumulator_impl!();
270}
271
272impl Accumulator for NullHLLAccumulator {
273 fn update_batch(&mut self, _values: &[ArrayRef]) -> Result<()> {
274 Ok(())
276 }
277
278 fn merge_batch(&mut self, _states: &[ArrayRef]) -> Result<()> {
279 Ok(())
280 }
281
282 fn state(&mut self) -> Result<Vec<ScalarValue>> {
283 Ok(vec![])
284 }
285
286 fn evaluate(&mut self) -> Result<ScalarValue> {
287 Ok(ScalarValue::UInt64(Some(0)))
288 }
289
290 fn size(&self) -> usize {
291 size_of_val(self)
292 }
293}
294
295impl Debug for ApproxDistinct {
296 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
297 f.debug_struct("ApproxDistinct")
298 .field("name", &self.name())
299 .field("signature", &self.signature)
300 .finish()
301 }
302}
303
304impl Default for ApproxDistinct {
305 fn default() -> Self {
306 Self::new()
307 }
308}
309
310#[user_doc(
311 doc_section(label = "Approximate Functions"),
312 description = "Returns the approximate number of distinct input values calculated using the HyperLogLog algorithm.",
313 syntax_example = "approx_distinct(expression)",
314 sql_example = r#"```sql
315> SELECT approx_distinct(column_name) FROM table_name;
316+-----------------------------------+
317| approx_distinct(column_name) |
318+-----------------------------------+
319| 42 |
320+-----------------------------------+
321```"#,
322 standard_argument(name = "expression",)
323)]
324#[derive(PartialEq, Eq, Hash)]
325pub struct ApproxDistinct {
326 signature: Signature,
327}
328
329impl ApproxDistinct {
330 pub fn new() -> Self {
331 Self {
332 signature: Signature::any(1, Volatility::Immutable),
333 }
334 }
335}
336
337impl AggregateUDFImpl for ApproxDistinct {
338 fn as_any(&self) -> &dyn Any {
339 self
340 }
341
342 fn name(&self) -> &str {
343 "approx_distinct"
344 }
345
346 fn signature(&self) -> &Signature {
347 &self.signature
348 }
349
350 fn return_type(&self, _: &[DataType]) -> Result<DataType> {
351 Ok(DataType::UInt64)
352 }
353
354 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
355 Ok(vec![Field::new(
356 format_state_name(args.name, "hll_registers"),
357 DataType::Binary,
358 false,
359 )
360 .into()])
361 }
362
363 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
364 let data_type = acc_args.expr_fields[0].data_type();
365
366 let accumulator: Box<dyn Accumulator> = match data_type {
367 DataType::UInt8 => Box::new(NumericHLLAccumulator::<UInt8Type>::new()),
371 DataType::UInt16 => Box::new(NumericHLLAccumulator::<UInt16Type>::new()),
372 DataType::UInt32 => Box::new(NumericHLLAccumulator::<UInt32Type>::new()),
373 DataType::UInt64 => Box::new(NumericHLLAccumulator::<UInt64Type>::new()),
374 DataType::Int8 => Box::new(NumericHLLAccumulator::<Int8Type>::new()),
375 DataType::Int16 => Box::new(NumericHLLAccumulator::<Int16Type>::new()),
376 DataType::Int32 => Box::new(NumericHLLAccumulator::<Int32Type>::new()),
377 DataType::Int64 => Box::new(NumericHLLAccumulator::<Int64Type>::new()),
378 DataType::Date32 => Box::new(NumericHLLAccumulator::<Date32Type>::new()),
379 DataType::Date64 => Box::new(NumericHLLAccumulator::<Date64Type>::new()),
380 DataType::Time32(TimeUnit::Second) => {
381 Box::new(NumericHLLAccumulator::<Time32SecondType>::new())
382 }
383 DataType::Time32(TimeUnit::Millisecond) => {
384 Box::new(NumericHLLAccumulator::<Time32MillisecondType>::new())
385 }
386 DataType::Time64(TimeUnit::Microsecond) => {
387 Box::new(NumericHLLAccumulator::<Time64MicrosecondType>::new())
388 }
389 DataType::Time64(TimeUnit::Nanosecond) => {
390 Box::new(NumericHLLAccumulator::<Time64NanosecondType>::new())
391 }
392 DataType::Timestamp(TimeUnit::Second, _) => {
393 Box::new(NumericHLLAccumulator::<TimestampSecondType>::new())
394 }
395 DataType::Timestamp(TimeUnit::Millisecond, _) => {
396 Box::new(NumericHLLAccumulator::<TimestampMillisecondType>::new())
397 }
398 DataType::Timestamp(TimeUnit::Microsecond, _) => {
399 Box::new(NumericHLLAccumulator::<TimestampMicrosecondType>::new())
400 }
401 DataType::Timestamp(TimeUnit::Nanosecond, _) => {
402 Box::new(NumericHLLAccumulator::<TimestampNanosecondType>::new())
403 }
404 DataType::Utf8 => Box::new(StringHLLAccumulator::<i32>::new()),
405 DataType::LargeUtf8 => Box::new(StringHLLAccumulator::<i64>::new()),
406 DataType::Utf8View => Box::new(StringViewHLLAccumulator::<i32>::new()),
407 DataType::Binary => Box::new(BinaryHLLAccumulator::<i32>::new()),
408 DataType::LargeBinary => Box::new(BinaryHLLAccumulator::<i64>::new()),
409 DataType::Null => Box::new(NullHLLAccumulator),
410 other => {
411 return not_impl_err!(
412 "Support for 'approx_distinct' for data type {other} is not implemented"
413 )
414 }
415 };
416 Ok(accumulator)
417 }
418
419 fn documentation(&self) -> Option<&Documentation> {
420 self.doc()
421 }
422}