1use std::any::Any;
21use std::fmt::Debug;
22use std::mem::size_of_val;
23use std::sync::Arc;
24
25use arrow::array::{
26 downcast_array, Array, AsArray, BooleanArray, Float64Array, NullBufferBuilder,
27 UInt64Array,
28};
29use arrow::compute::{and, filter, is_not_null};
30use arrow::datatypes::{FieldRef, Float64Type, UInt64Type};
31use arrow::{
32 array::ArrayRef,
33 datatypes::{DataType, Field},
34};
35use datafusion_expr::{EmitTo, GroupsAccumulator};
36use datafusion_functions_aggregate_common::aggregate::groups_accumulator::accumulate::accumulate_multiple;
37use log::debug;
38
39use crate::covariance::CovarianceAccumulator;
40use crate::stddev::StddevAccumulator;
41use datafusion_common::{Result, ScalarValue};
42use datafusion_expr::{
43 function::{AccumulatorArgs, StateFieldsArgs},
44 utils::format_state_name,
45 Accumulator, AggregateUDFImpl, Documentation, Signature, Volatility,
46};
47use datafusion_functions_aggregate_common::stats::StatsType;
48use datafusion_macros::user_doc;
49
50make_udaf_expr_and_func!(
51 Correlation,
52 corr,
53 y x,
54 "Correlation between two numeric values.",
55 corr_udaf
56);
57
58#[user_doc(
59 doc_section(label = "Statistical Functions"),
60 description = "Returns the coefficient of correlation between two numeric values.",
61 syntax_example = "corr(expression1, expression2)",
62 sql_example = r#"```sql
63> SELECT corr(column1, column2) FROM table_name;
64+--------------------------------+
65| corr(column1, column2) |
66+--------------------------------+
67| 0.85 |
68+--------------------------------+
69```"#,
70 standard_argument(name = "expression1", prefix = "First"),
71 standard_argument(name = "expression2", prefix = "Second")
72)]
73#[derive(Debug, PartialEq, Eq, Hash)]
74pub struct Correlation {
75 signature: Signature,
76}
77
78impl Default for Correlation {
79 fn default() -> Self {
80 Self::new()
81 }
82}
83
84impl Correlation {
85 pub fn new() -> Self {
87 Self {
88 signature: Signature::exact(
89 vec![DataType::Float64, DataType::Float64],
90 Volatility::Immutable,
91 )
92 .with_parameter_names(vec!["y".to_string(), "x".to_string()])
93 .expect("valid parameter names for corr"),
94 }
95 }
96}
97
98impl AggregateUDFImpl for Correlation {
99 fn as_any(&self) -> &dyn Any {
101 self
102 }
103
104 fn name(&self) -> &str {
105 "corr"
106 }
107
108 fn signature(&self) -> &Signature {
109 &self.signature
110 }
111
112 fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
113 Ok(DataType::Float64)
114 }
115
116 fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
117 Ok(Box::new(CorrelationAccumulator::try_new()?))
118 }
119
120 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
121 let name = args.name;
122 Ok(vec![
123 Field::new(format_state_name(name, "count"), DataType::UInt64, true),
124 Field::new(format_state_name(name, "mean1"), DataType::Float64, true),
125 Field::new(format_state_name(name, "m2_1"), DataType::Float64, true),
126 Field::new(format_state_name(name, "mean2"), DataType::Float64, true),
127 Field::new(format_state_name(name, "m2_2"), DataType::Float64, true),
128 Field::new(
129 format_state_name(name, "algo_const"),
130 DataType::Float64,
131 true,
132 ),
133 ]
134 .into_iter()
135 .map(Arc::new)
136 .collect())
137 }
138
139 fn documentation(&self) -> Option<&Documentation> {
140 self.doc()
141 }
142
143 fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
144 true
145 }
146
147 fn create_groups_accumulator(
148 &self,
149 _args: AccumulatorArgs,
150 ) -> Result<Box<dyn GroupsAccumulator>> {
151 debug!("GroupsAccumulator is created for aggregate function `corr(c1, c2)`");
152 Ok(Box::new(CorrelationGroupsAccumulator::new()))
153 }
154}
155
156#[derive(Debug)]
158pub struct CorrelationAccumulator {
159 covar: CovarianceAccumulator,
160 stddev1: StddevAccumulator,
161 stddev2: StddevAccumulator,
162}
163
164impl CorrelationAccumulator {
165 pub fn try_new() -> Result<Self> {
167 Ok(Self {
168 covar: CovarianceAccumulator::try_new(StatsType::Population)?,
169 stddev1: StddevAccumulator::try_new(StatsType::Population)?,
170 stddev2: StddevAccumulator::try_new(StatsType::Population)?,
171 })
172 }
173}
174
175impl Accumulator for CorrelationAccumulator {
176 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
177 let values = if values[0].null_count() != 0 || values[1].null_count() != 0 {
183 let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?;
184 let values1 = filter(&values[0], &mask)?;
185 let values2 = filter(&values[1], &mask)?;
186
187 vec![values1, values2]
188 } else {
189 values.to_vec()
190 };
191
192 self.covar.update_batch(&values)?;
193 self.stddev1.update_batch(&values[0..1])?;
194 self.stddev2.update_batch(&values[1..2])?;
195 Ok(())
196 }
197
198 fn evaluate(&mut self) -> Result<ScalarValue> {
199 let n = self.covar.get_count();
200 if n < 2 {
201 return Ok(ScalarValue::Float64(None));
202 }
203
204 let covar = self.covar.evaluate()?;
205 let stddev1 = self.stddev1.evaluate()?;
206 let stddev2 = self.stddev2.evaluate()?;
207
208 if let ScalarValue::Float64(Some(c)) = covar {
209 if let ScalarValue::Float64(Some(s1)) = stddev1 {
210 if let ScalarValue::Float64(Some(s2)) = stddev2 {
211 if s1 == 0_f64 || s2 == 0_f64 {
212 return Ok(ScalarValue::Float64(None));
213 } else {
214 return Ok(ScalarValue::Float64(Some(c / s1 / s2)));
215 }
216 }
217 }
218 }
219
220 Ok(ScalarValue::Float64(None))
221 }
222
223 fn size(&self) -> usize {
224 size_of_val(self) - size_of_val(&self.covar) + self.covar.size()
225 - size_of_val(&self.stddev1)
226 + self.stddev1.size()
227 - size_of_val(&self.stddev2)
228 + self.stddev2.size()
229 }
230
231 fn state(&mut self) -> Result<Vec<ScalarValue>> {
232 Ok(vec![
233 ScalarValue::from(self.covar.get_count()),
234 ScalarValue::from(self.covar.get_mean1()),
235 ScalarValue::from(self.stddev1.get_m2()),
236 ScalarValue::from(self.covar.get_mean2()),
237 ScalarValue::from(self.stddev2.get_m2()),
238 ScalarValue::from(self.covar.get_algo_const()),
239 ])
240 }
241
242 fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
243 let states_c = [
244 Arc::clone(&states[0]),
245 Arc::clone(&states[1]),
246 Arc::clone(&states[3]),
247 Arc::clone(&states[5]),
248 ];
249 let states_s1 = [
250 Arc::clone(&states[0]),
251 Arc::clone(&states[1]),
252 Arc::clone(&states[2]),
253 ];
254 let states_s2 = [
255 Arc::clone(&states[0]),
256 Arc::clone(&states[3]),
257 Arc::clone(&states[4]),
258 ];
259
260 self.covar.merge_batch(&states_c)?;
261 self.stddev1.merge_batch(&states_s1)?;
262 self.stddev2.merge_batch(&states_s2)?;
263 Ok(())
264 }
265
266 fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
267 let values = if values[0].null_count() != 0 || values[1].null_count() != 0 {
268 let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?;
269 let values1 = filter(&values[0], &mask)?;
270 let values2 = filter(&values[1], &mask)?;
271
272 vec![values1, values2]
273 } else {
274 values.to_vec()
275 };
276
277 self.covar.retract_batch(&values)?;
278 self.stddev1.retract_batch(&values[0..1])?;
279 self.stddev2.retract_batch(&values[1..2])?;
280 Ok(())
281 }
282}
283
284#[derive(Default)]
285pub struct CorrelationGroupsAccumulator {
286 count: Vec<u64>,
290 sum_x: Vec<f64>,
292 sum_y: Vec<f64>,
294 sum_xy: Vec<f64>,
296 sum_xx: Vec<f64>,
298 sum_yy: Vec<f64>,
300}
301
302impl CorrelationGroupsAccumulator {
303 pub fn new() -> Self {
304 Default::default()
305 }
306}
307
308fn accumulate_correlation_states(
314 group_indices: &[usize],
315 state_arrays: (
316 &UInt64Array, &Float64Array, &Float64Array, &Float64Array, &Float64Array, &Float64Array, ),
323 mut value_fn: impl FnMut(usize, u64, &[f64]),
324) {
325 let (counts, sum_x, sum_y, sum_xy, sum_xx, sum_yy) = state_arrays;
326
327 assert_eq!(counts.null_count(), 0);
328 assert_eq!(sum_x.null_count(), 0);
329 assert_eq!(sum_y.null_count(), 0);
330 assert_eq!(sum_xy.null_count(), 0);
331 assert_eq!(sum_xx.null_count(), 0);
332 assert_eq!(sum_yy.null_count(), 0);
333
334 let counts_values = counts.values().as_ref();
335 let sum_x_values = sum_x.values().as_ref();
336 let sum_y_values = sum_y.values().as_ref();
337 let sum_xy_values = sum_xy.values().as_ref();
338 let sum_xx_values = sum_xx.values().as_ref();
339 let sum_yy_values = sum_yy.values().as_ref();
340
341 for (idx, &group_idx) in group_indices.iter().enumerate() {
342 let row = [
343 sum_x_values[idx],
344 sum_y_values[idx],
345 sum_xy_values[idx],
346 sum_xx_values[idx],
347 sum_yy_values[idx],
348 ];
349 value_fn(group_idx, counts_values[idx], &row);
350 }
351}
352
353impl GroupsAccumulator for CorrelationGroupsAccumulator {
369 fn update_batch(
370 &mut self,
371 values: &[ArrayRef],
372 group_indices: &[usize],
373 opt_filter: Option<&BooleanArray>,
374 total_num_groups: usize,
375 ) -> Result<()> {
376 self.count.resize(total_num_groups, 0);
377 self.sum_x.resize(total_num_groups, 0.0);
378 self.sum_y.resize(total_num_groups, 0.0);
379 self.sum_xy.resize(total_num_groups, 0.0);
380 self.sum_xx.resize(total_num_groups, 0.0);
381 self.sum_yy.resize(total_num_groups, 0.0);
382
383 let array_x = downcast_array::<Float64Array>(&values[0]);
384 let array_y = downcast_array::<Float64Array>(&values[1]);
385
386 accumulate_multiple(
387 group_indices,
388 &[&array_x, &array_y],
389 opt_filter,
390 |group_index, batch_index, columns| {
391 let x = columns[0].value(batch_index);
392 let y = columns[1].value(batch_index);
393 self.count[group_index] += 1;
394 self.sum_x[group_index] += x;
395 self.sum_y[group_index] += y;
396 self.sum_xy[group_index] += x * y;
397 self.sum_xx[group_index] += x * x;
398 self.sum_yy[group_index] += y * y;
399 },
400 );
401
402 Ok(())
403 }
404
405 fn merge_batch(
406 &mut self,
407 values: &[ArrayRef],
408 group_indices: &[usize],
409 opt_filter: Option<&BooleanArray>,
410 total_num_groups: usize,
411 ) -> Result<()> {
412 self.count.resize(total_num_groups, 0);
414 self.sum_x.resize(total_num_groups, 0.0);
415 self.sum_y.resize(total_num_groups, 0.0);
416 self.sum_xy.resize(total_num_groups, 0.0);
417 self.sum_xx.resize(total_num_groups, 0.0);
418 self.sum_yy.resize(total_num_groups, 0.0);
419
420 let partial_counts = values[0].as_primitive::<UInt64Type>();
422 let partial_sum_x = values[1].as_primitive::<Float64Type>();
423 let partial_sum_y = values[2].as_primitive::<Float64Type>();
424 let partial_sum_xy = values[3].as_primitive::<Float64Type>();
425 let partial_sum_xx = values[4].as_primitive::<Float64Type>();
426 let partial_sum_yy = values[5].as_primitive::<Float64Type>();
427
428 assert!(opt_filter.is_none(), "aggregate filter should be applied in partial stage, there should be no filter in final stage");
429
430 accumulate_correlation_states(
431 group_indices,
432 (
433 partial_counts,
434 partial_sum_x,
435 partial_sum_y,
436 partial_sum_xy,
437 partial_sum_xx,
438 partial_sum_yy,
439 ),
440 |group_index, count, values| {
441 self.count[group_index] += count;
442 self.sum_x[group_index] += values[0];
443 self.sum_y[group_index] += values[1];
444 self.sum_xy[group_index] += values[2];
445 self.sum_xx[group_index] += values[3];
446 self.sum_yy[group_index] += values[4];
447 },
448 );
449
450 Ok(())
451 }
452
453 fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
454 let n = match emit_to {
455 EmitTo::All => self.count.len(),
456 EmitTo::First(n) => n,
457 };
458
459 let mut values = Vec::with_capacity(n);
460 let mut nulls = NullBufferBuilder::new(n);
461
462 for i in 0..n {
470 if self.count[i] < 2 {
471 values.push(0.0);
472 nulls.append_null();
473 continue;
474 }
475
476 let count = self.count[i];
477 let sum_x = self.sum_x[i];
478 let sum_y = self.sum_y[i];
479 let sum_xy = self.sum_xy[i];
480 let sum_xx = self.sum_xx[i];
481 let sum_yy = self.sum_yy[i];
482
483 let mean_x = sum_x / count as f64;
484 let mean_y = sum_y / count as f64;
485
486 let numerator = sum_xy - sum_x * mean_y;
487 let denominator =
488 ((sum_xx - sum_x * mean_x) * (sum_yy - sum_y * mean_y)).sqrt();
489
490 if denominator == 0.0 {
491 values.push(0.0);
492 nulls.append_null();
493 } else {
494 values.push(numerator / denominator);
495 nulls.append_non_null();
496 }
497 }
498
499 Ok(Arc::new(Float64Array::new(values.into(), nulls.finish())))
500 }
501
502 fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
503 let n = match emit_to {
504 EmitTo::All => self.count.len(),
505 EmitTo::First(n) => n,
506 };
507
508 Ok(vec![
509 Arc::new(UInt64Array::from(self.count[0..n].to_vec())),
510 Arc::new(Float64Array::from(self.sum_x[0..n].to_vec())),
511 Arc::new(Float64Array::from(self.sum_y[0..n].to_vec())),
512 Arc::new(Float64Array::from(self.sum_xy[0..n].to_vec())),
513 Arc::new(Float64Array::from(self.sum_xx[0..n].to_vec())),
514 Arc::new(Float64Array::from(self.sum_yy[0..n].to_vec())),
515 ])
516 }
517
518 fn size(&self) -> usize {
519 size_of_val(&self.count)
520 + size_of_val(&self.sum_x)
521 + size_of_val(&self.sum_y)
522 + size_of_val(&self.sum_xy)
523 + size_of_val(&self.sum_xx)
524 + size_of_val(&self.sum_yy)
525 }
526}
527
528#[cfg(test)]
529mod tests {
530 use super::*;
531 use arrow::array::{Float64Array, UInt64Array};
532
533 #[test]
534 fn test_accumulate_correlation_states() {
535 let group_indices = vec![0, 1, 0, 1];
537 let counts = UInt64Array::from(vec![1, 2, 3, 4]);
538 let sum_x = Float64Array::from(vec![10.0, 20.0, 30.0, 40.0]);
539 let sum_y = Float64Array::from(vec![1.0, 2.0, 3.0, 4.0]);
540 let sum_xy = Float64Array::from(vec![10.0, 40.0, 90.0, 160.0]);
541 let sum_xx = Float64Array::from(vec![100.0, 400.0, 900.0, 1600.0]);
542 let sum_yy = Float64Array::from(vec![1.0, 4.0, 9.0, 16.0]);
543
544 let mut accumulated = vec![];
545 accumulate_correlation_states(
546 &group_indices,
547 (&counts, &sum_x, &sum_y, &sum_xy, &sum_xx, &sum_yy),
548 |group_idx, count, values| {
549 accumulated.push((group_idx, count, values.to_vec()));
550 },
551 );
552
553 let expected = vec![
554 (0, 1, vec![10.0, 1.0, 10.0, 100.0, 1.0]),
555 (1, 2, vec![20.0, 2.0, 40.0, 400.0, 4.0]),
556 (0, 3, vec![30.0, 3.0, 90.0, 900.0, 9.0]),
557 (1, 4, vec![40.0, 4.0, 160.0, 1600.0, 16.0]),
558 ];
559 assert_eq!(accumulated, expected);
560
561 let counts = UInt64Array::from(vec![Some(1), None, Some(3), Some(4)]);
563 let sum_x = Float64Array::from(vec![10.0, 20.0, 30.0, 40.0]);
564 let sum_y = Float64Array::from(vec![1.0, 2.0, 3.0, 4.0]);
565 let sum_xy = Float64Array::from(vec![10.0, 40.0, 90.0, 160.0]);
566 let sum_xx = Float64Array::from(vec![100.0, 400.0, 900.0, 1600.0]);
567 let sum_yy = Float64Array::from(vec![1.0, 4.0, 9.0, 16.0]);
568
569 let result = std::panic::catch_unwind(|| {
570 accumulate_correlation_states(
571 &group_indices,
572 (&counts, &sum_x, &sum_y, &sum_xy, &sum_xx, &sum_yy),
573 |_, _, _| {},
574 )
575 });
576 assert!(result.is_err());
577 }
578}