datafusion_functions_aggregate/
approx_distinct.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! Defines physical expressions that can evaluated at runtime during query execution
19
20use crate::hyperloglog::HyperLogLog;
21use arrow::array::BinaryArray;
22use arrow::array::{
23    GenericBinaryArray, GenericStringArray, OffsetSizeTrait, PrimitiveArray,
24};
25use arrow::datatypes::{
26    ArrowPrimitiveType, Int16Type, Int32Type, Int64Type, Int8Type, UInt16Type,
27    UInt32Type, UInt64Type, UInt8Type,
28};
29use arrow::{array::ArrayRef, datatypes::DataType, datatypes::Field};
30use datafusion_common::ScalarValue;
31use datafusion_common::{
32    downcast_value, internal_err, not_impl_err, DataFusionError, Result,
33};
34use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
35use datafusion_expr::utils::format_state_name;
36use datafusion_expr::{
37    Accumulator, AggregateUDFImpl, Documentation, Signature, Volatility,
38};
39use datafusion_macros::user_doc;
40use std::any::Any;
41use std::fmt::{Debug, Formatter};
42use std::hash::Hash;
43use std::marker::PhantomData;
44
45make_udaf_expr_and_func!(
46    ApproxDistinct,
47    approx_distinct,
48    expression,
49    "approximate number of distinct input values",
50    approx_distinct_udaf
51);
52
53impl<T: Hash> From<&HyperLogLog<T>> for ScalarValue {
54    fn from(v: &HyperLogLog<T>) -> ScalarValue {
55        let values = v.as_ref().to_vec();
56        ScalarValue::Binary(Some(values))
57    }
58}
59
60impl<T: Hash> TryFrom<&[u8]> for HyperLogLog<T> {
61    type Error = DataFusionError;
62    fn try_from(v: &[u8]) -> Result<HyperLogLog<T>> {
63        let arr: [u8; 16384] = v.try_into().map_err(|_| {
64            DataFusionError::Internal(
65                "Impossibly got invalid binary array from states".into(),
66            )
67        })?;
68        Ok(HyperLogLog::<T>::new_with_registers(arr))
69    }
70}
71
72impl<T: Hash> TryFrom<&ScalarValue> for HyperLogLog<T> {
73    type Error = DataFusionError;
74    fn try_from(v: &ScalarValue) -> Result<HyperLogLog<T>> {
75        if let ScalarValue::Binary(Some(slice)) = v {
76            slice.as_slice().try_into()
77        } else {
78            internal_err!(
79                "Impossibly got invalid scalar value while converting to HyperLogLog"
80            )
81        }
82    }
83}
84
85#[derive(Debug)]
86struct NumericHLLAccumulator<T>
87where
88    T: ArrowPrimitiveType,
89    T::Native: Hash,
90{
91    hll: HyperLogLog<T::Native>,
92}
93
94impl<T> NumericHLLAccumulator<T>
95where
96    T: ArrowPrimitiveType,
97    T::Native: Hash,
98{
99    /// new approx_distinct accumulator
100    pub fn new() -> Self {
101        Self {
102            hll: HyperLogLog::new(),
103        }
104    }
105}
106
107#[derive(Debug)]
108struct StringHLLAccumulator<T>
109where
110    T: OffsetSizeTrait,
111{
112    hll: HyperLogLog<String>,
113    phantom_data: PhantomData<T>,
114}
115
116impl<T> StringHLLAccumulator<T>
117where
118    T: OffsetSizeTrait,
119{
120    /// new approx_distinct accumulator
121    pub fn new() -> Self {
122        Self {
123            hll: HyperLogLog::new(),
124            phantom_data: PhantomData,
125        }
126    }
127}
128
129#[derive(Debug)]
130struct BinaryHLLAccumulator<T>
131where
132    T: OffsetSizeTrait,
133{
134    hll: HyperLogLog<Vec<u8>>,
135    phantom_data: PhantomData<T>,
136}
137
138impl<T> BinaryHLLAccumulator<T>
139where
140    T: OffsetSizeTrait,
141{
142    /// new approx_distinct accumulator
143    pub fn new() -> Self {
144        Self {
145            hll: HyperLogLog::new(),
146            phantom_data: PhantomData,
147        }
148    }
149}
150
151macro_rules! default_accumulator_impl {
152    () => {
153        fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
154            assert_eq!(1, states.len(), "expect only 1 element in the states");
155            let binary_array = downcast_value!(states[0], BinaryArray);
156            for v in binary_array.iter() {
157                let v = v.ok_or_else(|| {
158                    DataFusionError::Internal(
159                        "Impossibly got empty binary array from states".into(),
160                    )
161                })?;
162                let other = v.try_into()?;
163                self.hll.merge(&other);
164            }
165            Ok(())
166        }
167
168        fn state(&mut self) -> Result<Vec<ScalarValue>> {
169            let value = ScalarValue::from(&self.hll);
170            Ok(vec![value])
171        }
172
173        fn evaluate(&mut self) -> Result<ScalarValue> {
174            Ok(ScalarValue::UInt64(Some(self.hll.count() as u64)))
175        }
176
177        fn size(&self) -> usize {
178            // HLL has static size
179            std::mem::size_of_val(self)
180        }
181    };
182}
183
184impl<T> Accumulator for BinaryHLLAccumulator<T>
185where
186    T: OffsetSizeTrait,
187{
188    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
189        let array: &GenericBinaryArray<T> =
190            downcast_value!(values[0], GenericBinaryArray, T);
191        // flatten because we would skip nulls
192        self.hll
193            .extend(array.into_iter().flatten().map(|v| v.to_vec()));
194        Ok(())
195    }
196
197    default_accumulator_impl!();
198}
199
200impl<T> Accumulator for StringHLLAccumulator<T>
201where
202    T: OffsetSizeTrait,
203{
204    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
205        let array: &GenericStringArray<T> =
206            downcast_value!(values[0], GenericStringArray, T);
207        // flatten because we would skip nulls
208        self.hll
209            .extend(array.into_iter().flatten().map(|i| i.to_string()));
210        Ok(())
211    }
212
213    default_accumulator_impl!();
214}
215
216impl<T> Accumulator for NumericHLLAccumulator<T>
217where
218    T: ArrowPrimitiveType + Debug,
219    T::Native: Hash,
220{
221    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
222        let array: &PrimitiveArray<T> = downcast_value!(values[0], PrimitiveArray, T);
223        // flatten because we would skip nulls
224        self.hll.extend(array.into_iter().flatten());
225        Ok(())
226    }
227
228    default_accumulator_impl!();
229}
230
231impl Debug for ApproxDistinct {
232    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
233        f.debug_struct("ApproxDistinct")
234            .field("name", &self.name())
235            .field("signature", &self.signature)
236            .finish()
237    }
238}
239
240impl Default for ApproxDistinct {
241    fn default() -> Self {
242        Self::new()
243    }
244}
245
246#[user_doc(
247    doc_section(label = "Approximate Functions"),
248    description = "Returns the approximate number of distinct input values calculated using the HyperLogLog algorithm.",
249    syntax_example = "approx_distinct(expression)",
250    sql_example = r#"```sql
251> SELECT approx_distinct(column_name) FROM table_name;
252+-----------------------------------+
253| approx_distinct(column_name)      |
254+-----------------------------------+
255| 42                                |
256+-----------------------------------+
257```"#,
258    standard_argument(name = "expression",)
259)]
260pub struct ApproxDistinct {
261    signature: Signature,
262}
263
264impl ApproxDistinct {
265    pub fn new() -> Self {
266        Self {
267            signature: Signature::any(1, Volatility::Immutable),
268        }
269    }
270}
271
272impl AggregateUDFImpl for ApproxDistinct {
273    fn as_any(&self) -> &dyn Any {
274        self
275    }
276
277    fn name(&self) -> &str {
278        "approx_distinct"
279    }
280
281    fn signature(&self) -> &Signature {
282        &self.signature
283    }
284
285    fn return_type(&self, _: &[DataType]) -> Result<DataType> {
286        Ok(DataType::UInt64)
287    }
288
289    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
290        Ok(vec![Field::new(
291            format_state_name(args.name, "hll_registers"),
292            DataType::Binary,
293            false,
294        )])
295    }
296
297    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
298        let data_type = acc_args.exprs[0].data_type(acc_args.schema)?;
299
300        let accumulator: Box<dyn Accumulator> = match data_type {
301            // TODO u8, i8, u16, i16 shall really be done using bitmap, not HLL
302            // TODO support for boolean (trivial case)
303            // https://github.com/apache/datafusion/issues/1109
304            DataType::UInt8 => Box::new(NumericHLLAccumulator::<UInt8Type>::new()),
305            DataType::UInt16 => Box::new(NumericHLLAccumulator::<UInt16Type>::new()),
306            DataType::UInt32 => Box::new(NumericHLLAccumulator::<UInt32Type>::new()),
307            DataType::UInt64 => Box::new(NumericHLLAccumulator::<UInt64Type>::new()),
308            DataType::Int8 => Box::new(NumericHLLAccumulator::<Int8Type>::new()),
309            DataType::Int16 => Box::new(NumericHLLAccumulator::<Int16Type>::new()),
310            DataType::Int32 => Box::new(NumericHLLAccumulator::<Int32Type>::new()),
311            DataType::Int64 => Box::new(NumericHLLAccumulator::<Int64Type>::new()),
312            DataType::Utf8 => Box::new(StringHLLAccumulator::<i32>::new()),
313            DataType::LargeUtf8 => Box::new(StringHLLAccumulator::<i64>::new()),
314            DataType::Binary => Box::new(BinaryHLLAccumulator::<i32>::new()),
315            DataType::LargeBinary => Box::new(BinaryHLLAccumulator::<i64>::new()),
316            other => {
317                return not_impl_err!(
318                "Support for 'approx_distinct' for data type {other} is not implemented"
319            )
320            }
321        };
322        Ok(accumulator)
323    }
324
325    fn documentation(&self) -> Option<&Documentation> {
326        self.doc()
327    }
328}