1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`CovarianceSample`]: covariance sample aggregations.

use std::fmt::Debug;

use arrow::{
    array::{ArrayRef, Float64Array, UInt64Array},
    compute::kernels::cast,
    datatypes::{DataType, Field},
};

use datafusion_common::{
    downcast_value, plan_err, unwrap_or_internal_err, DataFusionError, Result,
    ScalarValue,
};
use datafusion_expr::{
    function::AccumulatorArgs, type_coercion::aggregates::NUMERICS,
    utils::format_state_name, Accumulator, AggregateUDFImpl, Signature, Volatility,
};
use datafusion_physical_expr_common::aggregate::stats::StatsType;

make_udaf_expr_and_func!(
    CovarianceSample,
    covar_samp,
    y x,
    "Computes the sample covariance.",
    covar_samp_udaf
);

pub struct CovarianceSample {
    signature: Signature,
    aliases: Vec<String>,
}

impl Debug for CovarianceSample {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("CovarianceSample")
            .field("name", &self.name())
            .field("signature", &self.signature)
            .finish()
    }
}

impl Default for CovarianceSample {
    fn default() -> Self {
        Self::new()
    }
}

impl CovarianceSample {
    pub fn new() -> Self {
        Self {
            aliases: vec![String::from("covar")],
            signature: Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable),
        }
    }
}

impl AggregateUDFImpl for CovarianceSample {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn name(&self) -> &str {
        "covar_samp"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        if !arg_types[0].is_numeric() {
            return plan_err!("Covariance requires numeric input types");
        }

        Ok(DataType::Float64)
    }

    fn state_fields(
        &self,
        name: &str,
        _value_type: DataType,
        _ordering_fields: Vec<Field>,
    ) -> Result<Vec<Field>> {
        Ok(vec![
            Field::new(format_state_name(name, "count"), DataType::UInt64, true),
            Field::new(format_state_name(name, "mean1"), DataType::Float64, true),
            Field::new(format_state_name(name, "mean2"), DataType::Float64, true),
            Field::new(
                format_state_name(name, "algo_const"),
                DataType::Float64,
                true,
            ),
        ])
    }

    fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(CovarianceAccumulator::try_new(StatsType::Sample)?))
    }

    fn aliases(&self) -> &[String] {
        &self.aliases
    }
}

/// An accumulator to compute covariance
/// The algorithm used is an online implementation and numerically stable. It is derived from the following paper
/// for calculating variance:
/// Welford, B. P. (1962). "Note on a method for calculating corrected sums of squares and products".
/// Technometrics. 4 (3): 419–420. doi:10.2307/1266577. JSTOR 1266577.
///
/// The algorithm has been analyzed here:
/// Ling, Robert F. (1974). "Comparison of Several Algorithms for Computing Sample Means and Variances".
/// Journal of the American Statistical Association. 69 (348): 859–866. doi:10.2307/2286154. JSTOR 2286154.
///
/// Though it is not covered in the original paper but is based on the same idea, as a result the algorithm is online,
/// parallelizable and numerically stable.

#[derive(Debug)]
pub struct CovarianceAccumulator {
    algo_const: f64,
    mean1: f64,
    mean2: f64,
    count: u64,
    stats_type: StatsType,
}

impl CovarianceAccumulator {
    /// Creates a new `CovarianceAccumulator`
    pub fn try_new(s_type: StatsType) -> Result<Self> {
        Ok(Self {
            algo_const: 0_f64,
            mean1: 0_f64,
            mean2: 0_f64,
            count: 0_u64,
            stats_type: s_type,
        })
    }

    pub fn get_count(&self) -> u64 {
        self.count
    }

    pub fn get_mean1(&self) -> f64 {
        self.mean1
    }

    pub fn get_mean2(&self) -> f64 {
        self.mean2
    }

    pub fn get_algo_const(&self) -> f64 {
        self.algo_const
    }
}

impl Accumulator for CovarianceAccumulator {
    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![
            ScalarValue::from(self.count),
            ScalarValue::from(self.mean1),
            ScalarValue::from(self.mean2),
            ScalarValue::from(self.algo_const),
        ])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values1 = &cast(&values[0], &DataType::Float64)?;
        let values2 = &cast(&values[1], &DataType::Float64)?;

        let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
        let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

        for i in 0..values1.len() {
            let value1 = if values1.is_valid(i) {
                arr1.next()
            } else {
                None
            };
            let value2 = if values2.is_valid(i) {
                arr2.next()
            } else {
                None
            };

            if value1.is_none() || value2.is_none() {
                continue;
            }

            let value1 = unwrap_or_internal_err!(value1);
            let value2 = unwrap_or_internal_err!(value2);
            let new_count = self.count + 1;
            let delta1 = value1 - self.mean1;
            let new_mean1 = delta1 / new_count as f64 + self.mean1;
            let delta2 = value2 - self.mean2;
            let new_mean2 = delta2 / new_count as f64 + self.mean2;
            let new_c = delta1 * (value2 - new_mean2) + self.algo_const;

            self.count += 1;
            self.mean1 = new_mean1;
            self.mean2 = new_mean2;
            self.algo_const = new_c;
        }

        Ok(())
    }

    fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values1 = &cast(&values[0], &DataType::Float64)?;
        let values2 = &cast(&values[1], &DataType::Float64)?;
        let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
        let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

        for i in 0..values1.len() {
            let value1 = if values1.is_valid(i) {
                arr1.next()
            } else {
                None
            };
            let value2 = if values2.is_valid(i) {
                arr2.next()
            } else {
                None
            };

            if value1.is_none() || value2.is_none() {
                continue;
            }

            let value1 = unwrap_or_internal_err!(value1);
            let value2 = unwrap_or_internal_err!(value2);

            let new_count = self.count - 1;
            let delta1 = self.mean1 - value1;
            let new_mean1 = delta1 / new_count as f64 + self.mean1;
            let delta2 = self.mean2 - value2;
            let new_mean2 = delta2 / new_count as f64 + self.mean2;
            let new_c = self.algo_const - delta1 * (new_mean2 - value2);

            self.count -= 1;
            self.mean1 = new_mean1;
            self.mean2 = new_mean2;
            self.algo_const = new_c;
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        let counts = downcast_value!(states[0], UInt64Array);
        let means1 = downcast_value!(states[1], Float64Array);
        let means2 = downcast_value!(states[2], Float64Array);
        let cs = downcast_value!(states[3], Float64Array);

        for i in 0..counts.len() {
            let c = counts.value(i);
            if c == 0_u64 {
                continue;
            }
            let new_count = self.count + c;
            let new_mean1 = self.mean1 * self.count as f64 / new_count as f64
                + means1.value(i) * c as f64 / new_count as f64;
            let new_mean2 = self.mean2 * self.count as f64 / new_count as f64
                + means2.value(i) * c as f64 / new_count as f64;
            let delta1 = self.mean1 - means1.value(i);
            let delta2 = self.mean2 - means2.value(i);
            let new_c = self.algo_const
                + cs.value(i)
                + delta1 * delta2 * self.count as f64 * c as f64 / new_count as f64;

            self.count = new_count;
            self.mean1 = new_mean1;
            self.mean2 = new_mean2;
            self.algo_const = new_c;
        }
        Ok(())
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        let count = match self.stats_type {
            StatsType::Population => self.count,
            StatsType::Sample => {
                if self.count > 0 {
                    self.count - 1
                } else {
                    self.count
                }
            }
        };

        if count == 0 {
            Ok(ScalarValue::Float64(None))
        } else {
            Ok(ScalarValue::Float64(Some(self.algo_const / count as f64)))
        }
    }

    fn size(&self) -> usize {
        std::mem::size_of_val(self)
    }
}