datafusion_federation/optimizer/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
mod scan_result;
use std::sync::Arc;
use datafusion::{
common::not_impl_err,
common::tree_node::{Transformed, TreeNode, TreeNodeRecursion},
datasource::source_as_provider,
error::Result,
logical_expr::{Expr, Extension, LogicalPlan, Projection, TableScan, TableSource},
optimizer::optimizer::{Optimizer, OptimizerConfig, OptimizerRule},
};
use crate::{
FederatedTableProviderAdaptor, FederatedTableSource, FederationProvider, FederationProviderRef,
};
use scan_result::ScanResult;
/// An optimizer rule to identifying sub-plans to federate
///
/// The optimizer logic walks over the plan, look for the largest subtrees that only have
/// TableScans from the same [`FederationProvider`]. There 'largest sub-trees' are passed to their
/// respective [`FederationProvider::optimizer`].
#[derive(Default, Debug)]
pub struct FederationOptimizerRule {}
impl OptimizerRule for FederationOptimizerRule {
/// Try to rewrite `plan` to an optimized form, returning `Transformed::yes`
/// if the plan was rewritten and `Transformed::no` if it was not.
///
/// Note: this function is only called if [`Self::supports_rewrite`] returns
/// true. Otherwise the Optimizer calls [`Self::try_optimize`]
fn rewrite(
&self,
plan: LogicalPlan,
config: &dyn OptimizerConfig,
) -> Result<Transformed<LogicalPlan>> {
match self.optimize_plan_recursively(&plan, true, config)? {
(Some(optimized_plan), _) => Ok(Transformed::yes(optimized_plan)),
(None, _) => Ok(Transformed::no(plan)),
}
}
/// Does this rule support rewriting owned plans (rather than by reference)?
fn supports_rewrite(&self) -> bool {
true
}
/// A human readable name for this optimizer rule
fn name(&self) -> &str {
"federation_optimizer_rule"
}
}
impl FederationOptimizerRule {
/// Creates a new [`FederationOptimizerRule`]
pub fn new() -> Self {
Self::default()
}
/// Scans a plan to see if it belongs to a single [`FederationProvider`].
fn scan_plan_recursively(&self, plan: &LogicalPlan) -> Result<ScanResult> {
let mut sole_provider: ScanResult = ScanResult::None;
plan.apply(&mut |p: &LogicalPlan| -> Result<TreeNodeRecursion> {
let exprs_provider = self.scan_plan_exprs(p)?;
sole_provider.merge(exprs_provider);
if sole_provider.is_ambiguous() {
return Ok(TreeNodeRecursion::Stop);
}
let sub_provider = get_leaf_provider(p)?;
sole_provider.add(sub_provider);
Ok(sole_provider.check_recursion())
})?;
Ok(sole_provider)
}
/// Scans a plan's expressions to see if it belongs to a single [`FederationProvider`].
fn scan_plan_exprs(&self, plan: &LogicalPlan) -> Result<ScanResult> {
let mut sole_provider: ScanResult = ScanResult::None;
let exprs = plan.expressions();
for expr in &exprs {
let expr_result = self.scan_expr_recursively(expr)?;
sole_provider.merge(expr_result);
if sole_provider.is_ambiguous() {
return Ok(sole_provider);
}
}
Ok(sole_provider)
}
/// scans an expression to see if it belongs to a single [`FederationProvider`]
fn scan_expr_recursively(&self, expr: &Expr) -> Result<ScanResult> {
let mut sole_provider: ScanResult = ScanResult::None;
expr.apply(&mut |e: &Expr| -> Result<TreeNodeRecursion> {
// TODO: Support other types of sub-queries
match e {
Expr::ScalarSubquery(ref subquery) => {
let plan_result = self.scan_plan_recursively(&subquery.subquery)?;
sole_provider.merge(plan_result);
Ok(sole_provider.check_recursion())
}
Expr::InSubquery(_) => not_impl_err!("InSubquery"),
Expr::OuterReferenceColumn(..) => {
// Subqueries that reference outer columns are not supported
// for now. We handle this here as ambiguity to force
// federation lower in the plan tree.
sole_provider = ScanResult::Ambiguous;
Ok(TreeNodeRecursion::Stop)
}
_ => Ok(TreeNodeRecursion::Continue),
}
})?;
Ok(sole_provider)
}
/// Recursively finds the largest sub-plans that can be federated
/// to a single FederationProvider.
///
/// Returns a plan if a sub-tree was federated, otherwise None.
///
/// Returns a ScanResult of all FederationProviders in the subtree.
fn optimize_plan_recursively(
&self,
plan: &LogicalPlan,
is_root: bool,
_config: &dyn OptimizerConfig,
) -> Result<(Option<LogicalPlan>, ScanResult)> {
let mut sole_provider: ScanResult = ScanResult::None;
if let LogicalPlan::Extension(Extension { ref node }) = plan {
if node.name() == "Federated" {
// Avoid attempting double federation
return Ok((None, ScanResult::Ambiguous));
}
}
// Check if this plan node is a leaf that determines the FederationProvider
let leaf_provider = get_leaf_provider(plan)?;
// Check if the expressions contain, a potentially different, FederationProvider
let exprs_result = self.scan_plan_exprs(plan)?;
let optimize_expressions = exprs_result.is_some();
// Return early if this is a leaf and there is no ambiguity with the expressions.
if leaf_provider.is_some() && (exprs_result.is_none() || exprs_result == leaf_provider) {
return Ok((None, leaf_provider.into()));
}
// Aggregate leaf & expression providers
sole_provider.add(leaf_provider);
sole_provider.merge(exprs_result);
let inputs = plan.inputs();
// Return early if there are no sources.
if inputs.is_empty() && sole_provider.is_none() {
return Ok((None, ScanResult::None));
}
// Recursively optimize inputs
let input_results = inputs
.iter()
.map(|i| self.optimize_plan_recursively(i, false, _config))
.collect::<Result<Vec<_>>>()?;
// Aggregate the input providers
input_results.iter().for_each(|(_, scan_result)| {
sole_provider.merge(scan_result.clone());
});
if sole_provider.is_none() {
// No providers found
// TODO: Is/should this be reachable?
return Ok((None, ScanResult::None));
}
// If all sources are federated to the same provider
if let ScanResult::Distinct(provider) = sole_provider {
if !is_root {
// The largest sub-plan is higher up.
return Ok((None, ScanResult::Distinct(provider)));
}
let Some(optimizer) = provider.optimizer() else {
// No optimizer provided
return Ok((None, ScanResult::None));
};
// If this is the root plan node; federate the entire plan
let optimized = optimizer.optimize(plan.clone(), _config, |_, _| {})?;
return Ok((Some(optimized), ScanResult::None));
}
// The plan is ambiguous; any input that is not yet optimized and has a
// sole provider represents a largest sub-plan and should be federated.
//
// We loop over the input optimization results, federate where needed and
// return a complete list of new inputs for the optimized plan.
let new_inputs = input_results
.into_iter()
.enumerate()
.map(|(i, (input_plan, input_result))| {
if let Some(federated_plan) = input_plan {
// Already federated deeper in the plan tree
return Ok(federated_plan);
}
let original_input = (*inputs.get(i).unwrap()).clone();
if input_result.is_ambiguous() {
// Can happen if the input is already federated, so use
// the original input.
return Ok(original_input);
}
let provider = input_result.unwrap();
let Some(provider) = provider else {
// No provider for this input; use the original input.
return Ok(original_input);
};
let Some(optimizer) = provider.optimizer() else {
// No optimizer for this input; use the original input.
return Ok(original_input);
};
// Replace the input with the federated counterpart
let wrapped = wrap_projection(original_input)?;
let optimized = optimizer.optimize(wrapped, _config, |_, _| {})?;
Ok(optimized)
})
.collect::<Result<Vec<_>>>()?;
// Optimize expressions if needed
let new_expressions = if optimize_expressions {
self.optimize_plan_exprs(plan, _config)?
} else {
plan.expressions()
};
// Construct the optimized plan
let new_plan = plan.with_new_exprs(new_expressions, new_inputs)?;
// Return the federated plan
Ok((Some(new_plan), ScanResult::Ambiguous))
}
/// Optimizes all exprs of a plan
fn optimize_plan_exprs(
&self,
plan: &LogicalPlan,
_config: &dyn OptimizerConfig,
) -> Result<Vec<Expr>> {
plan.expressions()
.iter()
.map(|expr| {
let transformed = expr
.clone()
.transform(&|e| self.optimize_expr_recursively(e, _config))?;
Ok(transformed.data)
})
.collect::<Result<Vec<_>>>()
}
/// recursively optimize expressions
/// Current logic: individually federate every sub-query.
fn optimize_expr_recursively(
&self,
expr: Expr,
_config: &dyn OptimizerConfig,
) -> Result<Transformed<Expr>> {
match expr {
Expr::ScalarSubquery(ref subquery) => {
// Optimize as root to force federating the sub-query
let (new_subquery, _) =
self.optimize_plan_recursively(&subquery.subquery, true, _config)?;
let Some(new_subquery) = new_subquery else {
return Ok(Transformed::no(expr));
};
Ok(Transformed::yes(Expr::ScalarSubquery(
subquery.with_plan(new_subquery.into()),
)))
}
Expr::InSubquery(_) => not_impl_err!("InSubquery"),
_ => Ok(Transformed::no(expr)),
}
}
}
/// NopFederationProvider is used to represent tables that are not federated, but
/// are resolved by DataFusion. This simplifies the logic of the optimizer rule.
struct NopFederationProvider {}
impl FederationProvider for NopFederationProvider {
fn name(&self) -> &str {
"nop"
}
fn compute_context(&self) -> Option<String> {
None
}
fn optimizer(&self) -> Option<Arc<Optimizer>> {
None
}
}
fn get_leaf_provider(plan: &LogicalPlan) -> Result<Option<FederationProviderRef>> {
match plan {
LogicalPlan::TableScan(TableScan { ref source, .. }) => {
let Some(federated_source) = get_table_source(source)? else {
// Table is not federated but provided by a standard table provider.
// We use a placeholder federation provider to simplify the logic.
return Ok(Some(Arc::new(NopFederationProvider {})));
};
let provider = federated_source.federation_provider();
Ok(Some(provider))
}
_ => Ok(None),
}
}
fn wrap_projection(plan: LogicalPlan) -> Result<LogicalPlan> {
// TODO: minimize requested columns
match plan {
LogicalPlan::Projection(_) => Ok(plan),
_ => {
let expr = plan
.schema()
.columns()
.iter()
.map(|c| Expr::Column(c.clone()))
.collect::<Vec<Expr>>();
Ok(LogicalPlan::Projection(Projection::try_new(
expr,
Arc::new(plan),
)?))
}
}
}
pub fn get_table_source(
source: &Arc<dyn TableSource>,
) -> Result<Option<Arc<dyn FederatedTableSource>>> {
// Unwrap TableSource
let source = source_as_provider(source)?;
// Get FederatedTableProviderAdaptor
let Some(wrapper) = source
.as_any()
.downcast_ref::<FederatedTableProviderAdaptor>()
else {
return Ok(None);
};
// Return original FederatedTableSource
Ok(Some(Arc::clone(&wrapper.source)))
}