1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
mod scan_result;

use std::sync::Arc;

use datafusion::{
    common::not_impl_err,
    common::tree_node::{Transformed, TreeNode, TreeNodeRecursion},
    datasource::source_as_provider,
    error::Result,
    logical_expr::{Expr, Extension, LogicalPlan, Projection, TableScan, TableSource},
    optimizer::optimizer::{Optimizer, OptimizerConfig, OptimizerRule},
};

use crate::{
    FederatedTableProviderAdaptor, FederatedTableSource, FederationProvider, FederationProviderRef,
};

use scan_result::ScanResult;

/// An optimizer rule to identifying sub-plans to federate
///
/// The optimizer logic walks over the plan, look for the largest subtrees that only have
/// TableScans from the same [`FederationProvider`]. There 'largest sub-trees' are passed to their
/// respective [`FederationProvider::optimizer`].
#[derive(Default)]
pub struct FederationOptimizerRule {}

impl OptimizerRule for FederationOptimizerRule {
    /// Try to rewrite `plan` to an optimized form, returning `Transformed::yes`
    /// if the plan was rewritten and `Transformed::no` if it was not.
    ///
    /// Note: this function is only called if [`Self::supports_rewrite`] returns
    /// true. Otherwise the Optimizer calls  [`Self::try_optimize`]
    fn rewrite(
        &self,
        plan: LogicalPlan,
        config: &dyn OptimizerConfig,
    ) -> Result<Transformed<LogicalPlan>> {
        match self.optimize_plan_recursively(&plan, true, config)? {
            (Some(optimized_plan), _) => Ok(Transformed::yes(optimized_plan)),
            (None, _) => Ok(Transformed::no(plan)),
        }
    }

    /// Does this rule support rewriting owned plans (rather than by reference)?
    fn supports_rewrite(&self) -> bool {
        true
    }

    /// A human readable name for this optimizer rule
    fn name(&self) -> &str {
        "federation_optimizer_rule"
    }
}

impl FederationOptimizerRule {
    /// Creates a new [`FederationOptimizerRule`]
    pub fn new() -> Self {
        Self::default()
    }

    /// Scans a plan to see if it belongs to a single [`FederationProvider`].
    fn scan_plan_recursively(&self, plan: &LogicalPlan) -> Result<ScanResult> {
        let mut sole_provider: ScanResult = ScanResult::None;

        plan.apply(&mut |p: &LogicalPlan| -> Result<TreeNodeRecursion> {
            let exprs_provider = self.scan_plan_exprs(p)?;
            sole_provider.merge(exprs_provider);

            if sole_provider.is_ambiguous() {
                return Ok(TreeNodeRecursion::Stop);
            }

            let sub_provider = get_leaf_provider(p)?;
            sole_provider.add(sub_provider);

            Ok(sole_provider.check_recursion())
        })?;

        Ok(sole_provider)
    }

    /// Scans a plan's expressions to see if it belongs to a single [`FederationProvider`].
    fn scan_plan_exprs(&self, plan: &LogicalPlan) -> Result<ScanResult> {
        let mut sole_provider: ScanResult = ScanResult::None;

        let exprs = plan.expressions();
        for expr in &exprs {
            let expr_result = self.scan_expr_recursively(expr)?;
            sole_provider.merge(expr_result);

            if sole_provider.is_ambiguous() {
                return Ok(sole_provider);
            }
        }

        Ok(sole_provider)
    }

    /// scans an expression to see if it belongs to a single [`FederationProvider`]
    fn scan_expr_recursively(&self, expr: &Expr) -> Result<ScanResult> {
        let mut sole_provider: ScanResult = ScanResult::None;

        expr.apply(&mut |e: &Expr| -> Result<TreeNodeRecursion> {
            // TODO: Support other types of sub-queries
            match e {
                Expr::ScalarSubquery(ref subquery) => {
                    let plan_result = self.scan_plan_recursively(&subquery.subquery)?;

                    sole_provider.merge(plan_result);
                    Ok(sole_provider.check_recursion())
                }
                Expr::InSubquery(_) => not_impl_err!("InSubquery"),
                Expr::OuterReferenceColumn(..) => {
                    // Subqueries that reference outer columns are not supported
                    // for now. We handle this here as ambiguity to force
                    // federation lower in the plan tree.
                    sole_provider = ScanResult::Ambiguous;
                    Ok(TreeNodeRecursion::Stop)
                }
                _ => Ok(TreeNodeRecursion::Continue),
            }
        })?;

        Ok(sole_provider)
    }

    /// Recursively finds the largest sub-plans that can be federated
    /// to a single FederationProvider.
    ///
    /// Returns a plan if a sub-tree was federated, otherwise None.
    ///
    /// Returns a ScanResult of all FederationProviders in the subtree.
    fn optimize_plan_recursively(
        &self,
        plan: &LogicalPlan,
        is_root: bool,
        _config: &dyn OptimizerConfig,
    ) -> Result<(Option<LogicalPlan>, ScanResult)> {
        let mut sole_provider: ScanResult = ScanResult::None;

        if let LogicalPlan::Extension(Extension { ref node }) = plan {
            if node.name() == "Federated" {
                // Avoid attempting double federation
                return Ok((None, ScanResult::Ambiguous));
            }
        }

        // Check if this plan node is a leaf that determines the FederationProvider
        let leaf_provider = get_leaf_provider(plan)?;

        // Check if the expressions contain, a potentially different, FederationProvider
        let exprs_result = self.scan_plan_exprs(plan)?;
        let optimize_expressions = exprs_result.is_some();

        // Return early if this is a leaf and there is no ambiguity with the expressions.
        if leaf_provider.is_some() && (exprs_result.is_none() || exprs_result == leaf_provider) {
            return Ok((None, leaf_provider.into()));
        }
        // Aggregate leaf & expression providers
        sole_provider.add(leaf_provider);
        sole_provider.merge(exprs_result);

        let inputs = plan.inputs();
        // Return early if there are no sources.
        if inputs.is_empty() && sole_provider.is_none() {
            return Ok((None, ScanResult::None));
        }

        // Recursively optimize inputs
        let input_results = inputs
            .iter()
            .map(|i| self.optimize_plan_recursively(i, false, _config))
            .collect::<Result<Vec<_>>>()?;

        // Aggregate the input providers
        input_results.iter().for_each(|(_, scan_result)| {
            sole_provider.merge(scan_result.clone());
        });

        if sole_provider.is_none() {
            // No providers found
            // TODO: Is/should this be reachable?
            return Ok((None, ScanResult::None));
        }

        // If all sources are federated to the same provider
        if let ScanResult::Distinct(provider) = sole_provider {
            if !is_root {
                // The largest sub-plan is higher up.
                return Ok((None, ScanResult::Distinct(provider)));
            }

            let Some(optimizer) = provider.optimizer() else {
                // No optimizer provided
                return Ok((None, ScanResult::None));
            };

            // If this is the root plan node; federate the entire plan
            let optimized = optimizer.optimize(plan.clone(), _config, |_, _| {})?;
            return Ok((Some(optimized), ScanResult::None));
        }

        // The plan is ambiguous; any input that is not yet optimized and has a
        // sole provider represents a largest sub-plan and should be federated.
        //
        // We loop over the input optimization results, federate where needed and
        // return a complete list of new inputs for the optimized plan.
        let new_inputs = input_results
            .into_iter()
            .enumerate()
            .map(|(i, (input_plan, input_result))| {
                if let Some(federated_plan) = input_plan {
                    // Already federated deeper in the plan tree
                    return Ok(federated_plan);
                }

                let original_input = (*inputs.get(i).unwrap()).clone();
                if input_result.is_ambiguous() {
                    // Can happen if the input is already federated, so use
                    // the original input.
                    return Ok(original_input);
                }

                let provider = input_result.unwrap();
                let Some(provider) = provider else {
                    // No provider for this input; use the original input.
                    return Ok(original_input);
                };

                let Some(optimizer) = provider.optimizer() else {
                    // No optimizer for this input; use the original input.
                    return Ok(original_input);
                };

                // Replace the input with the federated counterpart
                let wrapped = wrap_projection(original_input)?;
                let optimized = optimizer.optimize(wrapped, _config, |_, _| {})?;

                Ok(optimized)
            })
            .collect::<Result<Vec<_>>>()?;

        // Optimize expressions if needed
        let new_expressions = if optimize_expressions {
            self.optimize_plan_exprs(plan, _config)?
        } else {
            plan.expressions()
        };

        // Construct the optimized plan
        let new_plan = plan.with_new_exprs(new_expressions, new_inputs)?;

        // Return the federated plan
        Ok((Some(new_plan), ScanResult::Ambiguous))
    }

    /// Optimizes all exprs of a plan
    fn optimize_plan_exprs(
        &self,
        plan: &LogicalPlan,
        _config: &dyn OptimizerConfig,
    ) -> Result<Vec<Expr>> {
        plan.expressions()
            .iter()
            .map(|expr| {
                let transformed = expr
                    .clone()
                    .transform(&|e| self.optimize_expr_recursively(e, _config))?;
                Ok(transformed.data)
            })
            .collect::<Result<Vec<_>>>()
    }

    /// recursively optimize expressions
    /// Current logic: individually federate every sub-query.
    fn optimize_expr_recursively(
        &self,
        expr: Expr,
        _config: &dyn OptimizerConfig,
    ) -> Result<Transformed<Expr>> {
        match expr {
            Expr::ScalarSubquery(ref subquery) => {
                // Optimize as root to force federating the sub-query
                let (new_subquery, _) =
                    self.optimize_plan_recursively(&subquery.subquery, true, _config)?;
                let Some(new_subquery) = new_subquery else {
                    return Ok(Transformed::no(expr));
                };
                Ok(Transformed::yes(Expr::ScalarSubquery(
                    subquery.with_plan(new_subquery.into()),
                )))
            }
            Expr::InSubquery(_) => not_impl_err!("InSubquery"),
            _ => Ok(Transformed::no(expr)),
        }
    }
}

/// NopFederationProvider is used to represent tables that are not federated, but
/// are resolved by DataFusion. This simplifies the logic of the optimizer rule.
struct NopFederationProvider {}

impl FederationProvider for NopFederationProvider {
    fn name(&self) -> &str {
        "nop"
    }

    fn compute_context(&self) -> Option<String> {
        None
    }

    fn optimizer(&self) -> Option<Arc<Optimizer>> {
        None
    }
}

fn get_leaf_provider(plan: &LogicalPlan) -> Result<Option<FederationProviderRef>> {
    match plan {
        LogicalPlan::TableScan(TableScan { ref source, .. }) => {
            let Some(federated_source) = get_table_source(source)? else {
                // Table is not federated but provided by a standard table provider.
                // We use a placeholder federation provider to simplify the logic.
                return Ok(Some(Arc::new(NopFederationProvider {})));
            };
            let provider = federated_source.federation_provider();
            Ok(Some(provider))
        }
        _ => Ok(None),
    }
}

fn wrap_projection(plan: LogicalPlan) -> Result<LogicalPlan> {
    // TODO: minimize requested columns
    match plan {
        LogicalPlan::Projection(_) => Ok(plan),
        _ => {
            let expr = plan
                .schema()
                .columns()
                .iter()
                .map(|c| Expr::Column(c.clone()))
                .collect::<Vec<Expr>>();
            Ok(LogicalPlan::Projection(Projection::try_new(
                expr,
                Arc::new(plan),
            )?))
        }
    }
}

pub fn get_table_source(
    source: &Arc<dyn TableSource>,
) -> Result<Option<Arc<dyn FederatedTableSource>>> {
    // Unwrap TableSource
    let source = source_as_provider(source)?;

    // Get FederatedTableProviderAdaptor
    let Some(wrapper) = source
        .as_any()
        .downcast_ref::<FederatedTableProviderAdaptor>()
    else {
        return Ok(None);
    };

    // Return original FederatedTableSource
    Ok(Some(Arc::clone(&wrapper.source)))
}