datafusion_expr/
udaf.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! [`AggregateUDF`]: User Defined Aggregate Functions
19
20use std::any::Any;
21use std::cmp::Ordering;
22use std::fmt::{self, Debug, Formatter, Write};
23use std::hash::{Hash, Hasher};
24use std::sync::Arc;
25use std::vec;
26
27use arrow::datatypes::{DataType, Field, FieldRef};
28
29use datafusion_common::{exec_err, not_impl_err, Result, ScalarValue, Statistics};
30use datafusion_expr_common::dyn_eq::{DynEq, DynHash};
31use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
32
33use crate::expr::{
34    schema_name_from_exprs, schema_name_from_exprs_comma_separated_without_space,
35    schema_name_from_sorts, AggregateFunction, AggregateFunctionParams, ExprListDisplay,
36    WindowFunctionParams,
37};
38use crate::function::{
39    AccumulatorArgs, AggregateFunctionSimplification, StateFieldsArgs,
40};
41use crate::groups_accumulator::GroupsAccumulator;
42use crate::udf_eq::UdfEq;
43use crate::utils::format_state_name;
44use crate::utils::AggregateOrderSensitivity;
45use crate::{expr_vec_fmt, Accumulator, Expr};
46use crate::{Documentation, Signature};
47
48/// Logical representation of a user-defined [aggregate function] (UDAF).
49///
50/// An aggregate function combines the values from multiple input rows
51/// into a single output "aggregate" (summary) row. It is different
52/// from a scalar function because it is stateful across batches. User
53/// defined aggregate functions can be used as normal SQL aggregate
54/// functions (`GROUP BY` clause) as well as window functions (`OVER`
55/// clause).
56///
57/// `AggregateUDF` provides DataFusion the information needed to plan and call
58/// aggregate functions, including name, type information, and a factory
59/// function to create an [`Accumulator`] instance, to perform the actual
60/// aggregation.
61///
62/// For more information, please see [the examples]:
63///
64/// 1. For simple use cases, use [`create_udaf`] (examples in [`simple_udaf.rs`]).
65///
66/// 2. For advanced use cases, use [`AggregateUDFImpl`] which provides full API
67///    access (examples in [`advanced_udaf.rs`]).
68///
69/// # API Note
70/// This is a separate struct from `AggregateUDFImpl` to maintain backwards
71/// compatibility with the older API.
72///
73/// [the examples]: https://github.com/apache/datafusion/tree/main/datafusion-examples#single-process
74/// [aggregate function]: https://en.wikipedia.org/wiki/Aggregate_function
75/// [`Accumulator`]: Accumulator
76/// [`create_udaf`]: crate::expr_fn::create_udaf
77/// [`simple_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs
78/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
79#[derive(Debug, Clone, PartialOrd)]
80pub struct AggregateUDF {
81    inner: Arc<dyn AggregateUDFImpl>,
82}
83
84impl PartialEq for AggregateUDF {
85    fn eq(&self, other: &Self) -> bool {
86        self.inner.dyn_eq(other.inner.as_any())
87    }
88}
89
90impl Eq for AggregateUDF {}
91
92impl Hash for AggregateUDF {
93    fn hash<H: Hasher>(&self, state: &mut H) {
94        self.inner.dyn_hash(state)
95    }
96}
97
98impl fmt::Display for AggregateUDF {
99    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
100        write!(f, "{}", self.name())
101    }
102}
103
104/// Arguments passed to [`AggregateUDFImpl::value_from_stats`]
105#[derive(Debug)]
106pub struct StatisticsArgs<'a> {
107    /// The statistics of the aggregate input
108    pub statistics: &'a Statistics,
109    /// The resolved return type of the aggregate function
110    pub return_type: &'a DataType,
111    /// Whether the aggregate function is distinct.
112    ///
113    /// ```sql
114    /// SELECT COUNT(DISTINCT column1) FROM t;
115    /// ```
116    pub is_distinct: bool,
117    /// The physical expression of arguments the aggregate function takes.
118    pub exprs: &'a [Arc<dyn PhysicalExpr>],
119}
120
121impl AggregateUDF {
122    /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
123    ///
124    /// Note this is the same as using the `From` impl (`AggregateUDF::from`)
125    pub fn new_from_impl<F>(fun: F) -> AggregateUDF
126    where
127        F: AggregateUDFImpl + 'static,
128    {
129        Self::new_from_shared_impl(Arc::new(fun))
130    }
131
132    /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
133    pub fn new_from_shared_impl(fun: Arc<dyn AggregateUDFImpl>) -> AggregateUDF {
134        Self { inner: fun }
135    }
136
137    /// Return the underlying [`AggregateUDFImpl`] trait object for this function
138    pub fn inner(&self) -> &Arc<dyn AggregateUDFImpl> {
139        &self.inner
140    }
141
142    /// Adds additional names that can be used to invoke this function, in
143    /// addition to `name`
144    ///
145    /// If you implement [`AggregateUDFImpl`] directly you should return aliases directly.
146    pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
147        Self::new_from_impl(AliasedAggregateUDFImpl::new(
148            Arc::clone(&self.inner),
149            aliases,
150        ))
151    }
152
153    /// Creates an [`Expr`] that calls the aggregate function.
154    ///
155    /// This utility allows using the UDAF without requiring access to
156    /// the registry, such as with the DataFrame API.
157    pub fn call(&self, args: Vec<Expr>) -> Expr {
158        Expr::AggregateFunction(AggregateFunction::new_udf(
159            Arc::new(self.clone()),
160            args,
161            false,
162            None,
163            vec![],
164            None,
165        ))
166    }
167
168    /// Returns this function's name
169    ///
170    /// See [`AggregateUDFImpl::name`] for more details.
171    pub fn name(&self) -> &str {
172        self.inner.name()
173    }
174
175    /// Returns the aliases for this function.
176    pub fn aliases(&self) -> &[String] {
177        self.inner.aliases()
178    }
179
180    /// See [`AggregateUDFImpl::schema_name`] for more details.
181    pub fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
182        self.inner.schema_name(params)
183    }
184
185    /// Returns a human readable expression.
186    ///
187    /// See [`Expr::human_display`] for details.
188    pub fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
189        self.inner.human_display(params)
190    }
191
192    pub fn window_function_schema_name(
193        &self,
194        params: &WindowFunctionParams,
195    ) -> Result<String> {
196        self.inner.window_function_schema_name(params)
197    }
198
199    /// See [`AggregateUDFImpl::display_name`] for more details.
200    pub fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
201        self.inner.display_name(params)
202    }
203
204    pub fn window_function_display_name(
205        &self,
206        params: &WindowFunctionParams,
207    ) -> Result<String> {
208        self.inner.window_function_display_name(params)
209    }
210
211    pub fn is_nullable(&self) -> bool {
212        self.inner.is_nullable()
213    }
214
215    /// Returns this function's signature (what input types are accepted)
216    ///
217    /// See [`AggregateUDFImpl::signature`] for more details.
218    pub fn signature(&self) -> &Signature {
219        self.inner.signature()
220    }
221
222    /// Return the type of the function given its input types
223    ///
224    /// See [`AggregateUDFImpl::return_type`] for more details.
225    pub fn return_type(&self, args: &[DataType]) -> Result<DataType> {
226        self.inner.return_type(args)
227    }
228
229    /// Return the field of the function given its input fields
230    ///
231    /// See [`AggregateUDFImpl::return_field`] for more details.
232    pub fn return_field(&self, args: &[FieldRef]) -> Result<FieldRef> {
233        self.inner.return_field(args)
234    }
235
236    /// Return an accumulator the given aggregate, given its return datatype
237    pub fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
238        self.inner.accumulator(acc_args)
239    }
240
241    /// Return the fields used to store the intermediate state for this aggregator, given
242    /// the name of the aggregate, value type and ordering fields. See [`AggregateUDFImpl::state_fields`]
243    /// for more details.
244    ///
245    /// This is used to support multi-phase aggregations
246    pub fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
247        self.inner.state_fields(args)
248    }
249
250    /// See [`AggregateUDFImpl::groups_accumulator_supported`] for more details.
251    pub fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
252        self.inner.groups_accumulator_supported(args)
253    }
254
255    /// See [`AggregateUDFImpl::create_groups_accumulator`] for more details.
256    pub fn create_groups_accumulator(
257        &self,
258        args: AccumulatorArgs,
259    ) -> Result<Box<dyn GroupsAccumulator>> {
260        self.inner.create_groups_accumulator(args)
261    }
262
263    pub fn create_sliding_accumulator(
264        &self,
265        args: AccumulatorArgs,
266    ) -> Result<Box<dyn Accumulator>> {
267        self.inner.create_sliding_accumulator(args)
268    }
269
270    pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
271        self.inner.coerce_types(arg_types)
272    }
273
274    /// See [`AggregateUDFImpl::with_beneficial_ordering`] for more details.
275    pub fn with_beneficial_ordering(
276        self,
277        beneficial_ordering: bool,
278    ) -> Result<Option<AggregateUDF>> {
279        self.inner
280            .with_beneficial_ordering(beneficial_ordering)
281            .map(|updated_udf| updated_udf.map(|udf| Self { inner: udf }))
282    }
283
284    /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
285    /// for possible options.
286    pub fn order_sensitivity(&self) -> AggregateOrderSensitivity {
287        self.inner.order_sensitivity()
288    }
289
290    /// Reserves the `AggregateUDF` (e.g. returns the `AggregateUDF` that will
291    /// generate same result with this `AggregateUDF` when iterated in reverse
292    /// order, and `None` if there is no such `AggregateUDF`).
293    pub fn reverse_udf(&self) -> ReversedUDAF {
294        self.inner.reverse_expr()
295    }
296
297    /// Do the function rewrite
298    ///
299    /// See [`AggregateUDFImpl::simplify`] for more details.
300    pub fn simplify(&self) -> Option<AggregateFunctionSimplification> {
301        self.inner.simplify()
302    }
303
304    /// Returns true if the function is max, false if the function is min
305    /// None in all other cases, used in certain optimizations for
306    /// or aggregate
307    pub fn is_descending(&self) -> Option<bool> {
308        self.inner.is_descending()
309    }
310
311    /// Return the value of this aggregate function if it can be determined
312    /// entirely from statistics and arguments.
313    ///
314    /// See [`AggregateUDFImpl::value_from_stats`] for more details.
315    pub fn value_from_stats(
316        &self,
317        statistics_args: &StatisticsArgs,
318    ) -> Option<ScalarValue> {
319        self.inner.value_from_stats(statistics_args)
320    }
321
322    /// See [`AggregateUDFImpl::default_value`] for more details.
323    pub fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
324        self.inner.default_value(data_type)
325    }
326
327    /// See [`AggregateUDFImpl::supports_null_handling_clause`] for more details.
328    pub fn supports_null_handling_clause(&self) -> bool {
329        self.inner.supports_null_handling_clause()
330    }
331
332    /// See [`AggregateUDFImpl::supports_within_group_clause`] for more details.
333    pub fn supports_within_group_clause(&self) -> bool {
334        self.inner.supports_within_group_clause()
335    }
336
337    /// Returns the documentation for this Aggregate UDF.
338    ///
339    /// Documentation can be accessed programmatically as well as
340    /// generating publicly facing documentation.
341    pub fn documentation(&self) -> Option<&Documentation> {
342        self.inner.documentation()
343    }
344}
345
346impl<F> From<F> for AggregateUDF
347where
348    F: AggregateUDFImpl + Send + Sync + 'static,
349{
350    fn from(fun: F) -> Self {
351        Self::new_from_impl(fun)
352    }
353}
354
355/// Trait for implementing [`AggregateUDF`].
356///
357/// This trait exposes the full API for implementing user defined aggregate functions and
358/// can be used to implement any function.
359///
360/// See [`advanced_udaf.rs`] for a full example with complete implementation and
361/// [`AggregateUDF`] for other available options.
362///
363/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
364///
365/// # Basic Example
366/// ```
367/// # use std::any::Any;
368/// # use std::sync::{Arc, LazyLock};
369/// # use arrow::datatypes::{DataType, FieldRef};
370/// # use datafusion_common::{DataFusionError, plan_err, Result};
371/// # use datafusion_expr::{col, ColumnarValue, Signature, Volatility, Expr, Documentation};
372/// # use datafusion_expr::{AggregateUDFImpl, AggregateUDF, Accumulator, function::{AccumulatorArgs, StateFieldsArgs}};
373/// # use datafusion_expr::window_doc_sections::DOC_SECTION_AGGREGATE;
374/// # use arrow::datatypes::Schema;
375/// # use arrow::datatypes::Field;
376///
377/// #[derive(Debug, Clone, PartialEq, Eq, Hash)]
378/// struct GeoMeanUdf {
379///   signature: Signature,
380/// }
381///
382/// impl GeoMeanUdf {
383///   fn new() -> Self {
384///     Self {
385///       signature: Signature::uniform(1, vec![DataType::Float64], Volatility::Immutable),
386///      }
387///   }
388/// }
389///
390/// static DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
391///         Documentation::builder(DOC_SECTION_AGGREGATE, "calculates a geometric mean", "geo_mean(2.0)")
392///             .with_argument("arg1", "The Float64 number for the geometric mean")
393///             .build()
394///     });
395///
396/// fn get_doc() -> &'static Documentation {
397///     &DOCUMENTATION
398/// }
399///
400/// /// Implement the AggregateUDFImpl trait for GeoMeanUdf
401/// impl AggregateUDFImpl for GeoMeanUdf {
402///    fn as_any(&self) -> &dyn Any { self }
403///    fn name(&self) -> &str { "geo_mean" }
404///    fn signature(&self) -> &Signature { &self.signature }
405///    fn return_type(&self, args: &[DataType]) -> Result<DataType> {
406///      if !matches!(args.get(0), Some(&DataType::Float64)) {
407///        return plan_err!("geo_mean only accepts Float64 arguments");
408///      }
409///      Ok(DataType::Float64)
410///    }
411///    // This is the accumulator factory; DataFusion uses it to create new accumulators.
412///    fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { unimplemented!() }
413///    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
414///        Ok(vec![
415///             Arc::new(args.return_field.as_ref().clone().with_name("value")),
416///             Arc::new(Field::new("ordering", DataType::UInt32, true))
417///        ])
418///    }
419///    fn documentation(&self) -> Option<&Documentation> {
420///        Some(get_doc())
421///    }
422/// }
423///
424/// // Create a new AggregateUDF from the implementation
425/// let geometric_mean = AggregateUDF::from(GeoMeanUdf::new());
426///
427/// // Call the function `geo_mean(col)`
428/// let expr = geometric_mean.call(vec![col("a")]);
429/// ```
430pub trait AggregateUDFImpl: Debug + DynEq + DynHash + Send + Sync {
431    /// Returns this object as an [`Any`] trait object
432    fn as_any(&self) -> &dyn Any;
433
434    /// Returns this function's name
435    fn name(&self) -> &str;
436
437    /// Returns any aliases (alternate names) for this function.
438    ///
439    /// Note: `aliases` should only include names other than [`Self::name`].
440    /// Defaults to `[]` (no aliases)
441    fn aliases(&self) -> &[String] {
442        &[]
443    }
444
445    /// Returns the name of the column this expression would create
446    ///
447    /// See [`Expr::schema_name`] for details
448    ///
449    /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) ORDER BY [..]
450    fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
451        udaf_default_schema_name(self, params)
452    }
453
454    /// Returns a human readable expression.
455    ///
456    /// See [`Expr::human_display`] for details.
457    fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
458        udaf_default_human_display(self, params)
459    }
460
461    /// Returns the name of the column this expression would create
462    ///
463    /// See [`Expr::schema_name`] for details
464    ///
465    /// Different from `schema_name` in that it is used for window aggregate function
466    ///
467    /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) [PARTITION BY [..]] [ORDER BY [..]]
468    fn window_function_schema_name(
469        &self,
470        params: &WindowFunctionParams,
471    ) -> Result<String> {
472        udaf_default_window_function_schema_name(self, params)
473    }
474
475    /// Returns the user-defined display name of function, given the arguments
476    ///
477    /// This can be used to customize the output column name generated by this
478    /// function.
479    ///
480    /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [filter] [order_by [..]]`
481    fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
482        udaf_default_display_name(self, params)
483    }
484
485    /// Returns the user-defined display name of function, given the arguments
486    ///
487    /// This can be used to customize the output column name generated by this
488    /// function.
489    ///
490    /// Different from `display_name` in that it is used for window aggregate function
491    ///
492    /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [partition by [..]] [order_by [..]]`
493    fn window_function_display_name(
494        &self,
495        params: &WindowFunctionParams,
496    ) -> Result<String> {
497        udaf_default_window_function_display_name(self, params)
498    }
499
500    /// Returns the function's [`Signature`] for information about what input
501    /// types are accepted and the function's Volatility.
502    fn signature(&self) -> &Signature;
503
504    /// What [`DataType`] will be returned by this function, given the types of
505    /// the arguments
506    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
507
508    /// What type will be returned by this function, given the arguments?
509    ///
510    /// By default, this function calls [`Self::return_type`] with the
511    /// types of each argument.
512    ///
513    /// # Notes
514    ///
515    /// Most UDFs should implement [`Self::return_type`] and not this
516    /// function as the output type for most functions only depends on the types
517    /// of their inputs (e.g. `sum(f64)` is always `f64`).
518    ///
519    /// This function can be used for more advanced cases such as:
520    ///
521    /// 1. specifying nullability
522    /// 2. return types based on the **values** of the arguments (rather than
523    ///    their **types**.
524    /// 3. return types based on metadata within the fields of the inputs
525    fn return_field(&self, arg_fields: &[FieldRef]) -> Result<FieldRef> {
526        udaf_default_return_field(self, arg_fields)
527    }
528
529    /// Whether the aggregate function is nullable.
530    ///
531    /// Nullable means that the function could return `null` for any inputs.
532    /// For example, aggregate functions like `COUNT` always return a non null value
533    /// but others like `MIN` will return `NULL` if there is nullable input.
534    /// Note that if the function is declared as *not* nullable, make sure the [`AggregateUDFImpl::default_value`] is `non-null`
535    fn is_nullable(&self) -> bool {
536        true
537    }
538
539    /// Return a new [`Accumulator`] that aggregates values for a specific
540    /// group during query execution.
541    ///
542    /// acc_args: [`AccumulatorArgs`] contains information about how the
543    /// aggregate function was called.
544    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>>;
545
546    /// Return the fields used to store the intermediate state of this accumulator.
547    ///
548    /// See [`Accumulator::state`] for background information.
549    ///
550    /// args:  [`StateFieldsArgs`] contains arguments passed to the
551    /// aggregate function's accumulator.
552    ///
553    /// # Notes:
554    ///
555    /// The default implementation returns a single state field named `name`
556    /// with the same type as `value_type`. This is suitable for aggregates such
557    /// as `SUM` or `MIN` where partial state can be combined by applying the
558    /// same aggregate.
559    ///
560    /// For aggregates such as `AVG` where the partial state is more complex
561    /// (e.g. a COUNT and a SUM), this method is used to define the additional
562    /// fields.
563    ///
564    /// The name of the fields must be unique within the query and thus should
565    /// be derived from `name`. See [`format_state_name`] for a utility function
566    /// to generate a unique name.
567    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
568        let fields = vec![args
569            .return_field
570            .as_ref()
571            .clone()
572            .with_name(format_state_name(args.name, "value"))];
573
574        Ok(fields
575            .into_iter()
576            .map(Arc::new)
577            .chain(args.ordering_fields.to_vec())
578            .collect())
579    }
580
581    /// If the aggregate expression has a specialized
582    /// [`GroupsAccumulator`] implementation. If this returns true,
583    /// `[Self::create_groups_accumulator]` will be called.
584    ///
585    /// # Notes
586    ///
587    /// Even if this function returns true, DataFusion will still use
588    /// [`Self::accumulator`] for certain queries, such as when this aggregate is
589    /// used as a window function or when there no GROUP BY columns in the
590    /// query.
591    fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
592        false
593    }
594
595    /// Return a specialized [`GroupsAccumulator`] that manages state
596    /// for all groups.
597    ///
598    /// For maximum performance, a [`GroupsAccumulator`] should be
599    /// implemented in addition to [`Accumulator`].
600    fn create_groups_accumulator(
601        &self,
602        _args: AccumulatorArgs,
603    ) -> Result<Box<dyn GroupsAccumulator>> {
604        not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
605    }
606
607    /// Sliding accumulator is an alternative accumulator that can be used for
608    /// window functions. It has retract method to revert the previous update.
609    ///
610    /// See [retract_batch] for more details.
611    ///
612    /// [retract_batch]: Accumulator::retract_batch
613    fn create_sliding_accumulator(
614        &self,
615        args: AccumulatorArgs,
616    ) -> Result<Box<dyn Accumulator>> {
617        self.accumulator(args)
618    }
619
620    /// Sets the indicator whether ordering requirements of the AggregateUDFImpl is
621    /// satisfied by its input. If this is not the case, UDFs with order
622    /// sensitivity `AggregateOrderSensitivity::Beneficial` can still produce
623    /// the correct result with possibly more work internally.
624    ///
625    /// # Returns
626    ///
627    /// Returns `Ok(Some(updated_udf))` if the process completes successfully.
628    /// If the expression can benefit from existing input ordering, but does
629    /// not implement the method, returns an error. Order insensitive and hard
630    /// requirement aggregators return `Ok(None)`.
631    fn with_beneficial_ordering(
632        self: Arc<Self>,
633        _beneficial_ordering: bool,
634    ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
635        if self.order_sensitivity().is_beneficial() {
636            return exec_err!(
637                "Should implement with satisfied for aggregator :{:?}",
638                self.name()
639            );
640        }
641        Ok(None)
642    }
643
644    /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
645    /// for possible options.
646    fn order_sensitivity(&self) -> AggregateOrderSensitivity {
647        // We have hard ordering requirements by default, meaning that order
648        // sensitive UDFs need their input orderings to satisfy their ordering
649        // requirements to generate correct results.
650        AggregateOrderSensitivity::HardRequirement
651    }
652
653    /// Optionally apply per-UDaF simplification / rewrite rules.
654    ///
655    /// This can be used to apply function specific simplification rules during
656    /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
657    /// implementation does nothing.
658    ///
659    /// Note that DataFusion handles simplifying arguments and  "constant
660    /// folding" (replacing a function call with constant arguments such as
661    /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
662    /// optimizations manually for specific UDFs.
663    ///
664    /// # Returns
665    ///
666    /// [None] if simplify is not defined or,
667    ///
668    /// Or, a closure with two arguments:
669    /// * 'aggregate_function': [AggregateFunction] for which simplified has been invoked
670    /// * 'info': [crate::simplify::SimplifyInfo]
671    ///
672    /// closure returns simplified [Expr] or an error.
673    ///
674    /// # Notes
675    ///
676    /// The returned expression must have the same schema as the original
677    /// expression, including both the data type and nullability. For example,
678    /// if the original expression is nullable, the returned expression must
679    /// also be nullable, otherwise it may lead to schema verification errors
680    /// later in query planning.
681    fn simplify(&self) -> Option<AggregateFunctionSimplification> {
682        None
683    }
684
685    /// Returns the reverse expression of the aggregate function.
686    fn reverse_expr(&self) -> ReversedUDAF {
687        ReversedUDAF::NotSupported
688    }
689
690    /// Coerce arguments of a function call to types that the function can evaluate.
691    ///
692    /// This function is only called if [`AggregateUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
693    /// UDAFs should return one of the other variants of `TypeSignature` which handle common
694    /// cases
695    ///
696    /// See the [type coercion module](crate::type_coercion)
697    /// documentation for more details on type coercion
698    ///
699    /// For example, if your function requires a floating point arguments, but the user calls
700    /// it like `my_func(1::int)` (aka with `1` as an integer), coerce_types could return `[DataType::Float64]`
701    /// to ensure the argument was cast to `1::double`
702    ///
703    /// # Parameters
704    /// * `arg_types`: The argument types of the arguments  this function with
705    ///
706    /// # Return value
707    /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
708    /// arguments to these specific types.
709    fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
710        not_impl_err!("Function {} does not implement coerce_types", self.name())
711    }
712
713    /// If this function is max, return true
714    /// If the function is min, return false
715    /// Otherwise return None (the default)
716    ///
717    ///
718    /// Note: this is used to use special aggregate implementations in certain conditions
719    fn is_descending(&self) -> Option<bool> {
720        None
721    }
722
723    /// Return the value of this aggregate function if it can be determined
724    /// entirely from statistics and arguments.
725    ///
726    /// Using a [`ScalarValue`] rather than a runtime computation can significantly
727    /// improving query performance.
728    ///
729    /// For example, if the minimum value of column `x` is known to be `42` from
730    /// statistics, then the aggregate `MIN(x)` should return `Some(ScalarValue(42))`
731    fn value_from_stats(&self, _statistics_args: &StatisticsArgs) -> Option<ScalarValue> {
732        None
733    }
734
735    /// Returns default value of the function given the input is all `null`.
736    ///
737    /// Most of the aggregate function return Null if input is Null,
738    /// while `count` returns 0 if input is Null
739    fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
740        ScalarValue::try_from(data_type)
741    }
742
743    /// If this function supports `[IGNORE NULLS | RESPECT NULLS]` clause, return true
744    /// If the function does not, return false
745    fn supports_null_handling_clause(&self) -> bool {
746        true
747    }
748
749    /// If this function supports the `WITHIN GROUP (ORDER BY column [ASC|DESC])`
750    /// SQL syntax, return `true`. Otherwise, return `false` (default) which will
751    /// cause an error when parsing SQL where this syntax is detected for this
752    /// function.
753    ///
754    /// This function should return `true` for ordered-set aggregate functions
755    /// only.
756    ///
757    /// # Ordered-set aggregate functions
758    ///
759    /// Ordered-set aggregate functions allow specifying a sort order that affects
760    /// how the function calculates its result, unlike other aggregate functions
761    /// like `sum` or `count`. For example, `percentile_cont` is an ordered-set
762    /// aggregate function that calculates the exact percentile value from a list
763    /// of values; the output of calculating the `0.75` percentile depends on if
764    /// you're calculating on an ascending or descending list of values.
765    ///
766    /// An example of how an ordered-set aggregate function is called with the
767    /// `WITHIN GROUP` SQL syntax:
768    ///
769    /// ```sql
770    /// -- Ascending
771    /// SELECT percentile_cont(0.75) WITHIN GROUP (ORDER BY c1 ASC) FROM table;
772    /// -- Default ordering is ascending if not explicitly specified
773    /// SELECT percentile_cont(0.75) WITHIN GROUP (ORDER BY c1) FROM table;
774    /// -- Descending
775    /// SELECT percentile_cont(0.75) WITHIN GROUP (ORDER BY c1 DESC) FROM table;
776    /// ```
777    ///
778    /// This calculates the `0.75` percentile of the column `c1` from `table`,
779    /// according to the specific ordering. The column specified in the `WITHIN GROUP`
780    /// ordering clause is taken as the column to calculate values on; specifying
781    /// the `WITHIN GROUP` clause is optional so these queries are equivalent:
782    ///
783    /// ```sql
784    /// -- If no WITHIN GROUP is specified then default ordering is implementation
785    /// -- dependent; in this case ascending for percentile_cont
786    /// SELECT percentile_cont(c1, 0.75) FROM table;
787    /// SELECT percentile_cont(0.75) WITHIN GROUP (ORDER BY c1 ASC) FROM table;
788    /// ```
789    ///
790    /// Aggregate UDFs can define their default ordering if the function is called
791    /// without the `WITHIN GROUP` clause, though a default of ascending is the
792    /// standard practice.
793    ///
794    /// Ordered-set aggregate function implementations are responsible for handling
795    /// the input sort order themselves (e.g. `percentile_cont` must buffer and
796    /// sort the values internally). That is, DataFusion does not introduce any
797    /// kind of sort into the plan for these functions with this syntax.
798    fn supports_within_group_clause(&self) -> bool {
799        false
800    }
801
802    /// Returns the documentation for this Aggregate UDF.
803    ///
804    /// Documentation can be accessed programmatically as well as
805    /// generating publicly facing documentation.
806    fn documentation(&self) -> Option<&Documentation> {
807        None
808    }
809
810    /// Indicates whether the aggregation function is monotonic as a set
811    /// function. See [`SetMonotonicity`] for details.
812    fn set_monotonicity(&self, _data_type: &DataType) -> SetMonotonicity {
813        SetMonotonicity::NotMonotonic
814    }
815}
816
817impl PartialEq for dyn AggregateUDFImpl {
818    fn eq(&self, other: &Self) -> bool {
819        self.dyn_eq(other.as_any())
820    }
821}
822
823impl PartialOrd for dyn AggregateUDFImpl {
824    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
825        match self.name().partial_cmp(other.name()) {
826            Some(Ordering::Equal) => self.signature().partial_cmp(other.signature()),
827            cmp => cmp,
828        }
829        // TODO (https://github.com/apache/datafusion/issues/17477) avoid recomparing all fields
830        .filter(|cmp| *cmp != Ordering::Equal || self == other)
831    }
832}
833
834/// Encapsulates default implementation of [`AggregateUDFImpl::schema_name`].
835pub fn udaf_default_schema_name<F: AggregateUDFImpl + ?Sized>(
836    func: &F,
837    params: &AggregateFunctionParams,
838) -> Result<String> {
839    let AggregateFunctionParams {
840        args,
841        distinct,
842        filter,
843        order_by,
844        null_treatment,
845    } = params;
846
847    // exclude the first function argument(= column) in ordered set aggregate function,
848    // because it is duplicated with the WITHIN GROUP clause in schema name.
849    let args = if func.supports_within_group_clause() && !order_by.is_empty() {
850        &args[1..]
851    } else {
852        &args[..]
853    };
854
855    let mut schema_name = String::new();
856
857    schema_name.write_fmt(format_args!(
858        "{}({}{})",
859        func.name(),
860        if *distinct { "DISTINCT " } else { "" },
861        schema_name_from_exprs_comma_separated_without_space(args)?
862    ))?;
863
864    if let Some(null_treatment) = null_treatment {
865        schema_name.write_fmt(format_args!(" {null_treatment}"))?;
866    }
867
868    if let Some(filter) = filter {
869        schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
870    };
871
872    if !order_by.is_empty() {
873        let clause = match func.supports_within_group_clause() {
874            true => "WITHIN GROUP",
875            false => "ORDER BY",
876        };
877
878        schema_name.write_fmt(format_args!(
879            " {} [{}]",
880            clause,
881            schema_name_from_sorts(order_by)?
882        ))?;
883    };
884
885    Ok(schema_name)
886}
887
888/// Encapsulates default implementation of [`AggregateUDFImpl::human_display`].
889pub fn udaf_default_human_display<F: AggregateUDFImpl + ?Sized>(
890    func: &F,
891    params: &AggregateFunctionParams,
892) -> Result<String> {
893    let AggregateFunctionParams {
894        args,
895        distinct,
896        filter,
897        order_by,
898        null_treatment,
899    } = params;
900
901    let mut schema_name = String::new();
902
903    schema_name.write_fmt(format_args!(
904        "{}({}{})",
905        func.name(),
906        if *distinct { "DISTINCT " } else { "" },
907        ExprListDisplay::comma_separated(args.as_slice())
908    ))?;
909
910    if let Some(null_treatment) = null_treatment {
911        schema_name.write_fmt(format_args!(" {null_treatment}"))?;
912    }
913
914    if let Some(filter) = filter {
915        schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
916    };
917
918    if !order_by.is_empty() {
919        schema_name.write_fmt(format_args!(
920            " ORDER BY [{}]",
921            schema_name_from_sorts(order_by)?
922        ))?;
923    };
924
925    Ok(schema_name)
926}
927
928/// Encapsulates default implementation of [`AggregateUDFImpl::window_function_schema_name`].
929pub fn udaf_default_window_function_schema_name<F: AggregateUDFImpl + ?Sized>(
930    func: &F,
931    params: &WindowFunctionParams,
932) -> Result<String> {
933    let WindowFunctionParams {
934        args,
935        partition_by,
936        order_by,
937        window_frame,
938        filter,
939        null_treatment,
940        distinct,
941    } = params;
942
943    let mut schema_name = String::new();
944
945    // Inject DISTINCT into the schema name when requested
946    if *distinct {
947        schema_name.write_fmt(format_args!(
948            "{}(DISTINCT {})",
949            func.name(),
950            schema_name_from_exprs(args)?
951        ))?;
952    } else {
953        schema_name.write_fmt(format_args!(
954            "{}({})",
955            func.name(),
956            schema_name_from_exprs(args)?
957        ))?;
958    }
959
960    if let Some(null_treatment) = null_treatment {
961        schema_name.write_fmt(format_args!(" {null_treatment}"))?;
962    }
963
964    if let Some(filter) = filter {
965        schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
966    }
967
968    if !partition_by.is_empty() {
969        schema_name.write_fmt(format_args!(
970            " PARTITION BY [{}]",
971            schema_name_from_exprs(partition_by)?
972        ))?;
973    }
974
975    if !order_by.is_empty() {
976        schema_name.write_fmt(format_args!(
977            " ORDER BY [{}]",
978            schema_name_from_sorts(order_by)?
979        ))?;
980    }
981
982    schema_name.write_fmt(format_args!(" {window_frame}"))?;
983
984    Ok(schema_name)
985}
986
987/// Encapsulates default implementation of [`AggregateUDFImpl::display_name`].
988pub fn udaf_default_display_name<F: AggregateUDFImpl + ?Sized>(
989    func: &F,
990    params: &AggregateFunctionParams,
991) -> Result<String> {
992    let AggregateFunctionParams {
993        args,
994        distinct,
995        filter,
996        order_by,
997        null_treatment,
998    } = params;
999
1000    let mut display_name = String::new();
1001
1002    display_name.write_fmt(format_args!(
1003        "{}({}{})",
1004        func.name(),
1005        if *distinct { "DISTINCT " } else { "" },
1006        expr_vec_fmt!(args)
1007    ))?;
1008
1009    if let Some(nt) = null_treatment {
1010        display_name.write_fmt(format_args!(" {nt}"))?;
1011    }
1012    if let Some(fe) = filter {
1013        display_name.write_fmt(format_args!(" FILTER (WHERE {fe})"))?;
1014    }
1015    if !order_by.is_empty() {
1016        display_name.write_fmt(format_args!(
1017            " ORDER BY [{}]",
1018            order_by
1019                .iter()
1020                .map(|o| format!("{o}"))
1021                .collect::<Vec<String>>()
1022                .join(", ")
1023        ))?;
1024    }
1025
1026    Ok(display_name)
1027}
1028
1029/// Encapsulates default implementation of [`AggregateUDFImpl::window_function_display_name`].
1030pub fn udaf_default_window_function_display_name<F: AggregateUDFImpl + ?Sized>(
1031    func: &F,
1032    params: &WindowFunctionParams,
1033) -> Result<String> {
1034    let WindowFunctionParams {
1035        args,
1036        partition_by,
1037        order_by,
1038        window_frame,
1039        filter,
1040        null_treatment,
1041        distinct,
1042    } = params;
1043
1044    let mut display_name = String::new();
1045
1046    if *distinct {
1047        display_name.write_fmt(format_args!(
1048            "{}(DISTINCT {})",
1049            func.name(),
1050            expr_vec_fmt!(args)
1051        ))?;
1052    } else {
1053        display_name.write_fmt(format_args!(
1054            "{}({})",
1055            func.name(),
1056            expr_vec_fmt!(args)
1057        ))?;
1058    }
1059
1060    if let Some(null_treatment) = null_treatment {
1061        display_name.write_fmt(format_args!(" {null_treatment}"))?;
1062    }
1063
1064    if let Some(fe) = filter {
1065        display_name.write_fmt(format_args!(" FILTER (WHERE {fe})"))?;
1066    }
1067
1068    if !partition_by.is_empty() {
1069        display_name.write_fmt(format_args!(
1070            " PARTITION BY [{}]",
1071            expr_vec_fmt!(partition_by)
1072        ))?;
1073    }
1074
1075    if !order_by.is_empty() {
1076        display_name
1077            .write_fmt(format_args!(" ORDER BY [{}]", expr_vec_fmt!(order_by)))?;
1078    };
1079
1080    display_name.write_fmt(format_args!(
1081        " {} BETWEEN {} AND {}",
1082        window_frame.units, window_frame.start_bound, window_frame.end_bound
1083    ))?;
1084
1085    Ok(display_name)
1086}
1087
1088/// Encapsulates default implementation of [`AggregateUDFImpl::return_field`].
1089pub fn udaf_default_return_field<F: AggregateUDFImpl + ?Sized>(
1090    func: &F,
1091    arg_fields: &[FieldRef],
1092) -> Result<FieldRef> {
1093    let arg_types: Vec<_> = arg_fields.iter().map(|f| f.data_type()).cloned().collect();
1094    let data_type = func.return_type(&arg_types)?;
1095
1096    Ok(Arc::new(Field::new(
1097        func.name(),
1098        data_type,
1099        func.is_nullable(),
1100    )))
1101}
1102
1103pub enum ReversedUDAF {
1104    /// The expression is the same as the original expression, like SUM, COUNT
1105    Identical,
1106    /// The expression does not support reverse calculation
1107    NotSupported,
1108    /// The expression is different from the original expression
1109    Reversed(Arc<AggregateUDF>),
1110}
1111
1112/// AggregateUDF that adds an alias to the underlying function. It is better to
1113/// implement [`AggregateUDFImpl`], which supports aliases, directly if possible.
1114#[derive(Debug, PartialEq, Eq, Hash)]
1115struct AliasedAggregateUDFImpl {
1116    inner: UdfEq<Arc<dyn AggregateUDFImpl>>,
1117    aliases: Vec<String>,
1118}
1119
1120impl AliasedAggregateUDFImpl {
1121    pub fn new(
1122        inner: Arc<dyn AggregateUDFImpl>,
1123        new_aliases: impl IntoIterator<Item = &'static str>,
1124    ) -> Self {
1125        let mut aliases = inner.aliases().to_vec();
1126        aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
1127
1128        Self {
1129            inner: inner.into(),
1130            aliases,
1131        }
1132    }
1133}
1134
1135#[warn(clippy::missing_trait_methods)] // Delegates, so it should implement every single trait method
1136impl AggregateUDFImpl for AliasedAggregateUDFImpl {
1137    fn as_any(&self) -> &dyn Any {
1138        self
1139    }
1140
1141    fn name(&self) -> &str {
1142        self.inner.name()
1143    }
1144
1145    fn signature(&self) -> &Signature {
1146        self.inner.signature()
1147    }
1148
1149    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
1150        self.inner.return_type(arg_types)
1151    }
1152
1153    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
1154        self.inner.accumulator(acc_args)
1155    }
1156
1157    fn aliases(&self) -> &[String] {
1158        &self.aliases
1159    }
1160
1161    fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
1162        self.inner.schema_name(params)
1163    }
1164
1165    fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
1166        self.inner.human_display(params)
1167    }
1168
1169    fn window_function_schema_name(
1170        &self,
1171        params: &WindowFunctionParams,
1172    ) -> Result<String> {
1173        self.inner.window_function_schema_name(params)
1174    }
1175
1176    fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
1177        self.inner.display_name(params)
1178    }
1179
1180    fn window_function_display_name(
1181        &self,
1182        params: &WindowFunctionParams,
1183    ) -> Result<String> {
1184        self.inner.window_function_display_name(params)
1185    }
1186
1187    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1188        self.inner.state_fields(args)
1189    }
1190
1191    fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
1192        self.inner.groups_accumulator_supported(args)
1193    }
1194
1195    fn create_groups_accumulator(
1196        &self,
1197        args: AccumulatorArgs,
1198    ) -> Result<Box<dyn GroupsAccumulator>> {
1199        self.inner.create_groups_accumulator(args)
1200    }
1201
1202    fn create_sliding_accumulator(
1203        &self,
1204        args: AccumulatorArgs,
1205    ) -> Result<Box<dyn Accumulator>> {
1206        self.inner.accumulator(args)
1207    }
1208
1209    fn with_beneficial_ordering(
1210        self: Arc<Self>,
1211        beneficial_ordering: bool,
1212    ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
1213        Arc::clone(&self.inner)
1214            .with_beneficial_ordering(beneficial_ordering)
1215            .map(|udf| {
1216                udf.map(|udf| {
1217                    Arc::new(AliasedAggregateUDFImpl {
1218                        inner: udf.into(),
1219                        aliases: self.aliases.clone(),
1220                    }) as Arc<dyn AggregateUDFImpl>
1221                })
1222            })
1223    }
1224
1225    fn order_sensitivity(&self) -> AggregateOrderSensitivity {
1226        self.inner.order_sensitivity()
1227    }
1228
1229    fn simplify(&self) -> Option<AggregateFunctionSimplification> {
1230        self.inner.simplify()
1231    }
1232
1233    fn reverse_expr(&self) -> ReversedUDAF {
1234        self.inner.reverse_expr()
1235    }
1236
1237    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
1238        self.inner.coerce_types(arg_types)
1239    }
1240
1241    fn return_field(&self, arg_fields: &[FieldRef]) -> Result<FieldRef> {
1242        self.inner.return_field(arg_fields)
1243    }
1244
1245    fn is_nullable(&self) -> bool {
1246        self.inner.is_nullable()
1247    }
1248
1249    fn is_descending(&self) -> Option<bool> {
1250        self.inner.is_descending()
1251    }
1252
1253    fn value_from_stats(&self, statistics_args: &StatisticsArgs) -> Option<ScalarValue> {
1254        self.inner.value_from_stats(statistics_args)
1255    }
1256
1257    fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
1258        self.inner.default_value(data_type)
1259    }
1260
1261    fn supports_null_handling_clause(&self) -> bool {
1262        self.inner.supports_null_handling_clause()
1263    }
1264
1265    fn supports_within_group_clause(&self) -> bool {
1266        self.inner.supports_within_group_clause()
1267    }
1268
1269    fn set_monotonicity(&self, data_type: &DataType) -> SetMonotonicity {
1270        self.inner.set_monotonicity(data_type)
1271    }
1272
1273    fn documentation(&self) -> Option<&Documentation> {
1274        self.inner.documentation()
1275    }
1276}
1277
1278/// Indicates whether an aggregation function is monotonic as a set
1279/// function. A set function is monotonically increasing if its value
1280/// increases as its argument grows (as a set). Formally, `f` is a
1281/// monotonically increasing set function if `f(S) >= f(T)` whenever `S`
1282/// is a superset of `T`.
1283///
1284/// For example `COUNT` and `MAX` are monotonically increasing as their
1285/// values always increase (or stay the same) as new values are seen. On
1286/// the other hand, `MIN` is monotonically decreasing as its value always
1287/// decreases or stays the same as new values are seen.
1288#[derive(Debug, Clone, PartialEq)]
1289pub enum SetMonotonicity {
1290    /// Aggregate value increases or stays the same as the input set grows.
1291    Increasing,
1292    /// Aggregate value decreases or stays the same as the input set grows.
1293    Decreasing,
1294    /// Aggregate value may increase, decrease, or stay the same as the input
1295    /// set grows.
1296    NotMonotonic,
1297}
1298
1299#[cfg(test)]
1300mod test {
1301    use crate::{AggregateUDF, AggregateUDFImpl};
1302    use arrow::datatypes::{DataType, FieldRef};
1303    use datafusion_common::Result;
1304    use datafusion_expr_common::accumulator::Accumulator;
1305    use datafusion_expr_common::signature::{Signature, Volatility};
1306    use datafusion_functions_aggregate_common::accumulator::{
1307        AccumulatorArgs, StateFieldsArgs,
1308    };
1309    use std::any::Any;
1310    use std::cmp::Ordering;
1311    use std::hash::{DefaultHasher, Hash, Hasher};
1312
1313    #[derive(Debug, Clone, PartialEq, Eq, Hash)]
1314    struct AMeanUdf {
1315        signature: Signature,
1316    }
1317
1318    impl AMeanUdf {
1319        fn new() -> Self {
1320            Self {
1321                signature: Signature::uniform(
1322                    1,
1323                    vec![DataType::Float64],
1324                    Volatility::Immutable,
1325                ),
1326            }
1327        }
1328    }
1329
1330    impl AggregateUDFImpl for AMeanUdf {
1331        fn as_any(&self) -> &dyn Any {
1332            self
1333        }
1334        fn name(&self) -> &str {
1335            "a"
1336        }
1337        fn signature(&self) -> &Signature {
1338            &self.signature
1339        }
1340        fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1341            unimplemented!()
1342        }
1343        fn accumulator(
1344            &self,
1345            _acc_args: AccumulatorArgs,
1346        ) -> Result<Box<dyn Accumulator>> {
1347            unimplemented!()
1348        }
1349        fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1350            unimplemented!()
1351        }
1352    }
1353
1354    #[derive(Debug, Clone, PartialEq, Eq, Hash)]
1355    struct BMeanUdf {
1356        signature: Signature,
1357    }
1358    impl BMeanUdf {
1359        fn new() -> Self {
1360            Self {
1361                signature: Signature::uniform(
1362                    1,
1363                    vec![DataType::Float64],
1364                    Volatility::Immutable,
1365                ),
1366            }
1367        }
1368    }
1369
1370    impl AggregateUDFImpl for BMeanUdf {
1371        fn as_any(&self) -> &dyn Any {
1372            self
1373        }
1374        fn name(&self) -> &str {
1375            "b"
1376        }
1377        fn signature(&self) -> &Signature {
1378            &self.signature
1379        }
1380        fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1381            unimplemented!()
1382        }
1383        fn accumulator(
1384            &self,
1385            _acc_args: AccumulatorArgs,
1386        ) -> Result<Box<dyn Accumulator>> {
1387            unimplemented!()
1388        }
1389        fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1390            unimplemented!()
1391        }
1392    }
1393
1394    #[test]
1395    fn test_partial_eq() {
1396        let a1 = AggregateUDF::from(AMeanUdf::new());
1397        let a2 = AggregateUDF::from(AMeanUdf::new());
1398        let eq = a1 == a2;
1399        assert!(eq);
1400        assert_eq!(a1, a2);
1401        assert_eq!(hash(a1), hash(a2));
1402    }
1403
1404    #[test]
1405    fn test_partial_ord() {
1406        // Test validates that partial ord is defined for AggregateUDF using the name and signature,
1407        // not intended to exhaustively test all possibilities
1408        let a1 = AggregateUDF::from(AMeanUdf::new());
1409        let a2 = AggregateUDF::from(AMeanUdf::new());
1410        assert_eq!(a1.partial_cmp(&a2), Some(Ordering::Equal));
1411
1412        let b1 = AggregateUDF::from(BMeanUdf::new());
1413        assert!(a1 < b1);
1414        assert!(!(a1 == b1));
1415    }
1416
1417    fn hash<T: Hash>(value: T) -> u64 {
1418        let hasher = &mut DefaultHasher::new();
1419        value.hash(hasher);
1420        hasher.finish()
1421    }
1422}