datafusion_expr/udaf.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! [`AggregateUDF`]: User Defined Aggregate Functions
19
20use std::any::Any;
21use std::cmp::Ordering;
22use std::fmt::{self, Debug, Formatter, Write};
23use std::hash::{Hash, Hasher};
24use std::sync::Arc;
25use std::vec;
26
27use arrow::datatypes::{DataType, Field, FieldRef};
28
29use datafusion_common::{exec_err, not_impl_err, Result, ScalarValue, Statistics};
30use datafusion_expr_common::dyn_eq::{DynEq, DynHash};
31use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
32
33use crate::expr::{
34 schema_name_from_exprs, schema_name_from_exprs_comma_separated_without_space,
35 schema_name_from_sorts, AggregateFunction, AggregateFunctionParams, ExprListDisplay,
36 WindowFunctionParams,
37};
38use crate::function::{
39 AccumulatorArgs, AggregateFunctionSimplification, StateFieldsArgs,
40};
41use crate::groups_accumulator::GroupsAccumulator;
42use crate::udf_eq::UdfEq;
43use crate::utils::format_state_name;
44use crate::utils::AggregateOrderSensitivity;
45use crate::{expr_vec_fmt, Accumulator, Expr};
46use crate::{Documentation, Signature};
47
48/// Logical representation of a user-defined [aggregate function] (UDAF).
49///
50/// An aggregate function combines the values from multiple input rows
51/// into a single output "aggregate" (summary) row. It is different
52/// from a scalar function because it is stateful across batches. User
53/// defined aggregate functions can be used as normal SQL aggregate
54/// functions (`GROUP BY` clause) as well as window functions (`OVER`
55/// clause).
56///
57/// `AggregateUDF` provides DataFusion the information needed to plan and call
58/// aggregate functions, including name, type information, and a factory
59/// function to create an [`Accumulator`] instance, to perform the actual
60/// aggregation.
61///
62/// For more information, please see [the examples]:
63///
64/// 1. For simple use cases, use [`create_udaf`] (examples in [`simple_udaf.rs`]).
65///
66/// 2. For advanced use cases, use [`AggregateUDFImpl`] which provides full API
67/// access (examples in [`advanced_udaf.rs`]).
68///
69/// # API Note
70/// This is a separate struct from `AggregateUDFImpl` to maintain backwards
71/// compatibility with the older API.
72///
73/// [the examples]: https://github.com/apache/datafusion/tree/main/datafusion-examples#single-process
74/// [aggregate function]: https://en.wikipedia.org/wiki/Aggregate_function
75/// [`Accumulator`]: crate::Accumulator
76/// [`create_udaf`]: crate::expr_fn::create_udaf
77/// [`simple_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs
78/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
79#[derive(Debug, Clone, PartialOrd)]
80pub struct AggregateUDF {
81 inner: Arc<dyn AggregateUDFImpl>,
82}
83
84impl PartialEq for AggregateUDF {
85 fn eq(&self, other: &Self) -> bool {
86 self.inner.dyn_eq(other.inner.as_any())
87 }
88}
89
90impl Eq for AggregateUDF {}
91
92impl Hash for AggregateUDF {
93 fn hash<H: Hasher>(&self, state: &mut H) {
94 self.inner.dyn_hash(state)
95 }
96}
97
98impl fmt::Display for AggregateUDF {
99 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
100 write!(f, "{}", self.name())
101 }
102}
103
104/// Arguments passed to [`AggregateUDFImpl::value_from_stats`]
105#[derive(Debug)]
106pub struct StatisticsArgs<'a> {
107 /// The statistics of the aggregate input
108 pub statistics: &'a Statistics,
109 /// The resolved return type of the aggregate function
110 pub return_type: &'a DataType,
111 /// Whether the aggregate function is distinct.
112 ///
113 /// ```sql
114 /// SELECT COUNT(DISTINCT column1) FROM t;
115 /// ```
116 pub is_distinct: bool,
117 /// The physical expression of arguments the aggregate function takes.
118 pub exprs: &'a [Arc<dyn PhysicalExpr>],
119}
120
121impl AggregateUDF {
122 /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
123 ///
124 /// Note this is the same as using the `From` impl (`AggregateUDF::from`)
125 pub fn new_from_impl<F>(fun: F) -> AggregateUDF
126 where
127 F: AggregateUDFImpl + 'static,
128 {
129 Self::new_from_shared_impl(Arc::new(fun))
130 }
131
132 /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
133 pub fn new_from_shared_impl(fun: Arc<dyn AggregateUDFImpl>) -> AggregateUDF {
134 Self { inner: fun }
135 }
136
137 /// Return the underlying [`AggregateUDFImpl`] trait object for this function
138 pub fn inner(&self) -> &Arc<dyn AggregateUDFImpl> {
139 &self.inner
140 }
141
142 /// Adds additional names that can be used to invoke this function, in
143 /// addition to `name`
144 ///
145 /// If you implement [`AggregateUDFImpl`] directly you should return aliases directly.
146 pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
147 Self::new_from_impl(AliasedAggregateUDFImpl::new(
148 Arc::clone(&self.inner),
149 aliases,
150 ))
151 }
152
153 /// Creates an [`Expr`] that calls the aggregate function.
154 ///
155 /// This utility allows using the UDAF without requiring access to
156 /// the registry, such as with the DataFrame API.
157 pub fn call(&self, args: Vec<Expr>) -> Expr {
158 Expr::AggregateFunction(AggregateFunction::new_udf(
159 Arc::new(self.clone()),
160 args,
161 false,
162 None,
163 vec![],
164 None,
165 ))
166 }
167
168 /// Returns this function's name
169 ///
170 /// See [`AggregateUDFImpl::name`] for more details.
171 pub fn name(&self) -> &str {
172 self.inner.name()
173 }
174
175 /// Returns the aliases for this function.
176 pub fn aliases(&self) -> &[String] {
177 self.inner.aliases()
178 }
179
180 /// See [`AggregateUDFImpl::schema_name`] for more details.
181 pub fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
182 self.inner.schema_name(params)
183 }
184
185 /// Returns a human readable expression.
186 ///
187 /// See [`Expr::human_display`] for details.
188 pub fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
189 self.inner.human_display(params)
190 }
191
192 pub fn window_function_schema_name(
193 &self,
194 params: &WindowFunctionParams,
195 ) -> Result<String> {
196 self.inner.window_function_schema_name(params)
197 }
198
199 /// See [`AggregateUDFImpl::display_name`] for more details.
200 pub fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
201 self.inner.display_name(params)
202 }
203
204 pub fn window_function_display_name(
205 &self,
206 params: &WindowFunctionParams,
207 ) -> Result<String> {
208 self.inner.window_function_display_name(params)
209 }
210
211 pub fn is_nullable(&self) -> bool {
212 self.inner.is_nullable()
213 }
214
215 /// Returns this function's signature (what input types are accepted)
216 ///
217 /// See [`AggregateUDFImpl::signature`] for more details.
218 pub fn signature(&self) -> &Signature {
219 self.inner.signature()
220 }
221
222 /// Return the type of the function given its input types
223 ///
224 /// See [`AggregateUDFImpl::return_type`] for more details.
225 pub fn return_type(&self, args: &[DataType]) -> Result<DataType> {
226 self.inner.return_type(args)
227 }
228
229 /// Return the field of the function given its input fields
230 ///
231 /// See [`AggregateUDFImpl::return_field`] for more details.
232 pub fn return_field(&self, args: &[FieldRef]) -> Result<FieldRef> {
233 self.inner.return_field(args)
234 }
235
236 /// Return an accumulator the given aggregate, given its return datatype
237 pub fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
238 self.inner.accumulator(acc_args)
239 }
240
241 /// Return the fields used to store the intermediate state for this aggregator, given
242 /// the name of the aggregate, value type and ordering fields. See [`AggregateUDFImpl::state_fields`]
243 /// for more details.
244 ///
245 /// This is used to support multi-phase aggregations
246 pub fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
247 self.inner.state_fields(args)
248 }
249
250 /// See [`AggregateUDFImpl::groups_accumulator_supported`] for more details.
251 pub fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
252 self.inner.groups_accumulator_supported(args)
253 }
254
255 /// See [`AggregateUDFImpl::create_groups_accumulator`] for more details.
256 pub fn create_groups_accumulator(
257 &self,
258 args: AccumulatorArgs,
259 ) -> Result<Box<dyn GroupsAccumulator>> {
260 self.inner.create_groups_accumulator(args)
261 }
262
263 pub fn create_sliding_accumulator(
264 &self,
265 args: AccumulatorArgs,
266 ) -> Result<Box<dyn Accumulator>> {
267 self.inner.create_sliding_accumulator(args)
268 }
269
270 pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
271 self.inner.coerce_types(arg_types)
272 }
273
274 /// See [`AggregateUDFImpl::with_beneficial_ordering`] for more details.
275 pub fn with_beneficial_ordering(
276 self,
277 beneficial_ordering: bool,
278 ) -> Result<Option<AggregateUDF>> {
279 self.inner
280 .with_beneficial_ordering(beneficial_ordering)
281 .map(|updated_udf| updated_udf.map(|udf| Self { inner: udf }))
282 }
283
284 /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
285 /// for possible options.
286 pub fn order_sensitivity(&self) -> AggregateOrderSensitivity {
287 self.inner.order_sensitivity()
288 }
289
290 /// Reserves the `AggregateUDF` (e.g. returns the `AggregateUDF` that will
291 /// generate same result with this `AggregateUDF` when iterated in reverse
292 /// order, and `None` if there is no such `AggregateUDF`).
293 pub fn reverse_udf(&self) -> ReversedUDAF {
294 self.inner.reverse_expr()
295 }
296
297 /// Do the function rewrite
298 ///
299 /// See [`AggregateUDFImpl::simplify`] for more details.
300 pub fn simplify(&self) -> Option<AggregateFunctionSimplification> {
301 self.inner.simplify()
302 }
303
304 /// Returns true if the function is max, false if the function is min
305 /// None in all other cases, used in certain optimizations for
306 /// or aggregate
307 pub fn is_descending(&self) -> Option<bool> {
308 self.inner.is_descending()
309 }
310
311 /// Return the value of this aggregate function if it can be determined
312 /// entirely from statistics and arguments.
313 ///
314 /// See [`AggregateUDFImpl::value_from_stats`] for more details.
315 pub fn value_from_stats(
316 &self,
317 statistics_args: &StatisticsArgs,
318 ) -> Option<ScalarValue> {
319 self.inner.value_from_stats(statistics_args)
320 }
321
322 /// See [`AggregateUDFImpl::default_value`] for more details.
323 pub fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
324 self.inner.default_value(data_type)
325 }
326
327 /// See [`AggregateUDFImpl::supports_null_handling_clause`] for more details.
328 pub fn supports_null_handling_clause(&self) -> bool {
329 self.inner.supports_null_handling_clause()
330 }
331
332 /// See [`AggregateUDFImpl::is_ordered_set_aggregate`] for more details.
333 pub fn is_ordered_set_aggregate(&self) -> bool {
334 self.inner.is_ordered_set_aggregate()
335 }
336
337 /// Returns the documentation for this Aggregate UDF.
338 ///
339 /// Documentation can be accessed programmatically as well as
340 /// generating publicly facing documentation.
341 pub fn documentation(&self) -> Option<&Documentation> {
342 self.inner.documentation()
343 }
344}
345
346impl<F> From<F> for AggregateUDF
347where
348 F: AggregateUDFImpl + Send + Sync + 'static,
349{
350 fn from(fun: F) -> Self {
351 Self::new_from_impl(fun)
352 }
353}
354
355/// Trait for implementing [`AggregateUDF`].
356///
357/// This trait exposes the full API for implementing user defined aggregate functions and
358/// can be used to implement any function.
359///
360/// See [`advanced_udaf.rs`] for a full example with complete implementation and
361/// [`AggregateUDF`] for other available options.
362///
363/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
364///
365/// # Basic Example
366/// ```
367/// # use std::any::Any;
368/// # use std::sync::{Arc, LazyLock};
369/// # use arrow::datatypes::{DataType, FieldRef};
370/// # use datafusion_common::{DataFusionError, plan_err, Result};
371/// # use datafusion_expr::{col, ColumnarValue, Signature, Volatility, Expr, Documentation};
372/// # use datafusion_expr::{AggregateUDFImpl, AggregateUDF, Accumulator, function::{AccumulatorArgs, StateFieldsArgs}};
373/// # use datafusion_expr::window_doc_sections::DOC_SECTION_AGGREGATE;
374/// # use arrow::datatypes::Schema;
375/// # use arrow::datatypes::Field;
376///
377/// #[derive(Debug, Clone, PartialEq, Eq, Hash)]
378/// struct GeoMeanUdf {
379/// signature: Signature,
380/// }
381///
382/// impl GeoMeanUdf {
383/// fn new() -> Self {
384/// Self {
385/// signature: Signature::uniform(1, vec![DataType::Float64], Volatility::Immutable),
386/// }
387/// }
388/// }
389///
390/// static DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
391/// Documentation::builder(DOC_SECTION_AGGREGATE, "calculates a geometric mean", "geo_mean(2.0)")
392/// .with_argument("arg1", "The Float64 number for the geometric mean")
393/// .build()
394/// });
395///
396/// fn get_doc() -> &'static Documentation {
397/// &DOCUMENTATION
398/// }
399///
400/// /// Implement the AggregateUDFImpl trait for GeoMeanUdf
401/// impl AggregateUDFImpl for GeoMeanUdf {
402/// fn as_any(&self) -> &dyn Any { self }
403/// fn name(&self) -> &str { "geo_mean" }
404/// fn signature(&self) -> &Signature { &self.signature }
405/// fn return_type(&self, args: &[DataType]) -> Result<DataType> {
406/// if !matches!(args.get(0), Some(&DataType::Float64)) {
407/// return plan_err!("geo_mean only accepts Float64 arguments");
408/// }
409/// Ok(DataType::Float64)
410/// }
411/// // This is the accumulator factory; DataFusion uses it to create new accumulators.
412/// fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { unimplemented!() }
413/// fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
414/// Ok(vec![
415/// Arc::new(args.return_field.as_ref().clone().with_name("value")),
416/// Arc::new(Field::new("ordering", DataType::UInt32, true))
417/// ])
418/// }
419/// fn documentation(&self) -> Option<&Documentation> {
420/// Some(get_doc())
421/// }
422/// }
423///
424/// // Create a new AggregateUDF from the implementation
425/// let geometric_mean = AggregateUDF::from(GeoMeanUdf::new());
426///
427/// // Call the function `geo_mean(col)`
428/// let expr = geometric_mean.call(vec![col("a")]);
429/// ```
430pub trait AggregateUDFImpl: Debug + DynEq + DynHash + Send + Sync {
431 /// Returns this object as an [`Any`] trait object
432 fn as_any(&self) -> &dyn Any;
433
434 /// Returns this function's name
435 fn name(&self) -> &str;
436
437 /// Returns any aliases (alternate names) for this function.
438 ///
439 /// Note: `aliases` should only include names other than [`Self::name`].
440 /// Defaults to `[]` (no aliases)
441 fn aliases(&self) -> &[String] {
442 &[]
443 }
444
445 /// Returns the name of the column this expression would create
446 ///
447 /// See [`Expr::schema_name`] for details
448 ///
449 /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) ORDER BY [..]
450 fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
451 let AggregateFunctionParams {
452 args,
453 distinct,
454 filter,
455 order_by,
456 null_treatment,
457 } = params;
458
459 // exclude the first function argument(= column) in ordered set aggregate function,
460 // because it is duplicated with the WITHIN GROUP clause in schema name.
461 let args = if self.is_ordered_set_aggregate() {
462 &args[1..]
463 } else {
464 &args[..]
465 };
466
467 let mut schema_name = String::new();
468
469 schema_name.write_fmt(format_args!(
470 "{}({}{})",
471 self.name(),
472 if *distinct { "DISTINCT " } else { "" },
473 schema_name_from_exprs_comma_separated_without_space(args)?
474 ))?;
475
476 if let Some(null_treatment) = null_treatment {
477 schema_name.write_fmt(format_args!(" {null_treatment}"))?;
478 }
479
480 if let Some(filter) = filter {
481 schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
482 };
483
484 if !order_by.is_empty() {
485 let clause = match self.is_ordered_set_aggregate() {
486 true => "WITHIN GROUP",
487 false => "ORDER BY",
488 };
489
490 schema_name.write_fmt(format_args!(
491 " {} [{}]",
492 clause,
493 schema_name_from_sorts(order_by)?
494 ))?;
495 };
496
497 Ok(schema_name)
498 }
499
500 /// Returns a human readable expression.
501 ///
502 /// See [`Expr::human_display`] for details.
503 fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
504 let AggregateFunctionParams {
505 args,
506 distinct,
507 filter,
508 order_by,
509 null_treatment,
510 } = params;
511
512 let mut schema_name = String::new();
513
514 schema_name.write_fmt(format_args!(
515 "{}({}{})",
516 self.name(),
517 if *distinct { "DISTINCT " } else { "" },
518 ExprListDisplay::comma_separated(args.as_slice())
519 ))?;
520
521 if let Some(null_treatment) = null_treatment {
522 schema_name.write_fmt(format_args!(" {null_treatment}"))?;
523 }
524
525 if let Some(filter) = filter {
526 schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
527 };
528
529 if !order_by.is_empty() {
530 schema_name.write_fmt(format_args!(
531 " ORDER BY [{}]",
532 schema_name_from_sorts(order_by)?
533 ))?;
534 };
535
536 Ok(schema_name)
537 }
538
539 /// Returns the name of the column this expression would create
540 ///
541 /// See [`Expr::schema_name`] for details
542 ///
543 /// Different from `schema_name` in that it is used for window aggregate function
544 ///
545 /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) [PARTITION BY [..]] [ORDER BY [..]]
546 fn window_function_schema_name(
547 &self,
548 params: &WindowFunctionParams,
549 ) -> Result<String> {
550 let WindowFunctionParams {
551 args,
552 partition_by,
553 order_by,
554 window_frame,
555 filter,
556 null_treatment,
557 distinct,
558 } = params;
559
560 let mut schema_name = String::new();
561
562 // Inject DISTINCT into the schema name when requested
563 if *distinct {
564 schema_name.write_fmt(format_args!(
565 "{}(DISTINCT {})",
566 self.name(),
567 schema_name_from_exprs(args)?
568 ))?;
569 } else {
570 schema_name.write_fmt(format_args!(
571 "{}({})",
572 self.name(),
573 schema_name_from_exprs(args)?
574 ))?;
575 }
576
577 if let Some(null_treatment) = null_treatment {
578 schema_name.write_fmt(format_args!(" {null_treatment}"))?;
579 }
580
581 if let Some(filter) = filter {
582 schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
583 }
584
585 if !partition_by.is_empty() {
586 schema_name.write_fmt(format_args!(
587 " PARTITION BY [{}]",
588 schema_name_from_exprs(partition_by)?
589 ))?;
590 }
591
592 if !order_by.is_empty() {
593 schema_name.write_fmt(format_args!(
594 " ORDER BY [{}]",
595 schema_name_from_sorts(order_by)?
596 ))?;
597 }
598
599 schema_name.write_fmt(format_args!(" {window_frame}"))?;
600
601 Ok(schema_name)
602 }
603
604 /// Returns the user-defined display name of function, given the arguments
605 ///
606 /// This can be used to customize the output column name generated by this
607 /// function.
608 ///
609 /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [filter] [order_by [..]]`
610 fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
611 let AggregateFunctionParams {
612 args,
613 distinct,
614 filter,
615 order_by,
616 null_treatment,
617 } = params;
618
619 let mut display_name = String::new();
620
621 display_name.write_fmt(format_args!(
622 "{}({}{})",
623 self.name(),
624 if *distinct { "DISTINCT " } else { "" },
625 expr_vec_fmt!(args)
626 ))?;
627
628 if let Some(nt) = null_treatment {
629 display_name.write_fmt(format_args!(" {nt}"))?;
630 }
631 if let Some(fe) = filter {
632 display_name.write_fmt(format_args!(" FILTER (WHERE {fe})"))?;
633 }
634 if !order_by.is_empty() {
635 display_name.write_fmt(format_args!(
636 " ORDER BY [{}]",
637 order_by
638 .iter()
639 .map(|o| format!("{o}"))
640 .collect::<Vec<String>>()
641 .join(", ")
642 ))?;
643 }
644
645 Ok(display_name)
646 }
647
648 /// Returns the user-defined display name of function, given the arguments
649 ///
650 /// This can be used to customize the output column name generated by this
651 /// function.
652 ///
653 /// Different from `display_name` in that it is used for window aggregate function
654 ///
655 /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [partition by [..]] [order_by [..]]`
656 fn window_function_display_name(
657 &self,
658 params: &WindowFunctionParams,
659 ) -> Result<String> {
660 let WindowFunctionParams {
661 args,
662 partition_by,
663 order_by,
664 window_frame,
665 filter,
666 null_treatment,
667 distinct,
668 } = params;
669
670 let mut display_name = String::new();
671
672 if *distinct {
673 display_name.write_fmt(format_args!(
674 "{}(DISTINCT {})",
675 self.name(),
676 expr_vec_fmt!(args)
677 ))?;
678 } else {
679 display_name.write_fmt(format_args!(
680 "{}({})",
681 self.name(),
682 expr_vec_fmt!(args)
683 ))?;
684 }
685
686 if let Some(null_treatment) = null_treatment {
687 display_name.write_fmt(format_args!(" {null_treatment}"))?;
688 }
689
690 if let Some(fe) = filter {
691 display_name.write_fmt(format_args!(" FILTER (WHERE {fe})"))?;
692 }
693
694 if !partition_by.is_empty() {
695 display_name.write_fmt(format_args!(
696 " PARTITION BY [{}]",
697 expr_vec_fmt!(partition_by)
698 ))?;
699 }
700
701 if !order_by.is_empty() {
702 display_name
703 .write_fmt(format_args!(" ORDER BY [{}]", expr_vec_fmt!(order_by)))?;
704 };
705
706 display_name.write_fmt(format_args!(
707 " {} BETWEEN {} AND {}",
708 window_frame.units, window_frame.start_bound, window_frame.end_bound
709 ))?;
710
711 Ok(display_name)
712 }
713
714 /// Returns the function's [`Signature`] for information about what input
715 /// types are accepted and the function's Volatility.
716 fn signature(&self) -> &Signature;
717
718 /// What [`DataType`] will be returned by this function, given the types of
719 /// the arguments
720 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
721
722 /// What type will be returned by this function, given the arguments?
723 ///
724 /// By default, this function calls [`Self::return_type`] with the
725 /// types of each argument.
726 ///
727 /// # Notes
728 ///
729 /// Most UDFs should implement [`Self::return_type`] and not this
730 /// function as the output type for most functions only depends on the types
731 /// of their inputs (e.g. `sum(f64)` is always `f64`).
732 ///
733 /// This function can be used for more advanced cases such as:
734 ///
735 /// 1. specifying nullability
736 /// 2. return types based on the **values** of the arguments (rather than
737 /// their **types**.
738 /// 3. return types based on metadata within the fields of the inputs
739 fn return_field(&self, arg_fields: &[FieldRef]) -> Result<FieldRef> {
740 let arg_types: Vec<_> =
741 arg_fields.iter().map(|f| f.data_type()).cloned().collect();
742 let data_type = self.return_type(&arg_types)?;
743
744 Ok(Arc::new(Field::new(
745 self.name(),
746 data_type,
747 self.is_nullable(),
748 )))
749 }
750
751 /// Whether the aggregate function is nullable.
752 ///
753 /// Nullable means that the function could return `null` for any inputs.
754 /// For example, aggregate functions like `COUNT` always return a non null value
755 /// but others like `MIN` will return `NULL` if there is nullable input.
756 /// Note that if the function is declared as *not* nullable, make sure the [`AggregateUDFImpl::default_value`] is `non-null`
757 fn is_nullable(&self) -> bool {
758 true
759 }
760
761 /// Return a new [`Accumulator`] that aggregates values for a specific
762 /// group during query execution.
763 ///
764 /// acc_args: [`AccumulatorArgs`] contains information about how the
765 /// aggregate function was called.
766 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>>;
767
768 /// Return the fields used to store the intermediate state of this accumulator.
769 ///
770 /// See [`Accumulator::state`] for background information.
771 ///
772 /// args: [`StateFieldsArgs`] contains arguments passed to the
773 /// aggregate function's accumulator.
774 ///
775 /// # Notes:
776 ///
777 /// The default implementation returns a single state field named `name`
778 /// with the same type as `value_type`. This is suitable for aggregates such
779 /// as `SUM` or `MIN` where partial state can be combined by applying the
780 /// same aggregate.
781 ///
782 /// For aggregates such as `AVG` where the partial state is more complex
783 /// (e.g. a COUNT and a SUM), this method is used to define the additional
784 /// fields.
785 ///
786 /// The name of the fields must be unique within the query and thus should
787 /// be derived from `name`. See [`format_state_name`] for a utility function
788 /// to generate a unique name.
789 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
790 let fields = vec![args
791 .return_field
792 .as_ref()
793 .clone()
794 .with_name(format_state_name(args.name, "value"))];
795
796 Ok(fields
797 .into_iter()
798 .map(Arc::new)
799 .chain(args.ordering_fields.to_vec())
800 .collect())
801 }
802
803 /// If the aggregate expression has a specialized
804 /// [`GroupsAccumulator`] implementation. If this returns true,
805 /// `[Self::create_groups_accumulator]` will be called.
806 ///
807 /// # Notes
808 ///
809 /// Even if this function returns true, DataFusion will still use
810 /// [`Self::accumulator`] for certain queries, such as when this aggregate is
811 /// used as a window function or when there no GROUP BY columns in the
812 /// query.
813 fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
814 false
815 }
816
817 /// Return a specialized [`GroupsAccumulator`] that manages state
818 /// for all groups.
819 ///
820 /// For maximum performance, a [`GroupsAccumulator`] should be
821 /// implemented in addition to [`Accumulator`].
822 fn create_groups_accumulator(
823 &self,
824 _args: AccumulatorArgs,
825 ) -> Result<Box<dyn GroupsAccumulator>> {
826 not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
827 }
828
829 /// Sliding accumulator is an alternative accumulator that can be used for
830 /// window functions. It has retract method to revert the previous update.
831 ///
832 /// See [retract_batch] for more details.
833 ///
834 /// [retract_batch]: datafusion_expr_common::accumulator::Accumulator::retract_batch
835 fn create_sliding_accumulator(
836 &self,
837 args: AccumulatorArgs,
838 ) -> Result<Box<dyn Accumulator>> {
839 self.accumulator(args)
840 }
841
842 /// Sets the indicator whether ordering requirements of the AggregateUDFImpl is
843 /// satisfied by its input. If this is not the case, UDFs with order
844 /// sensitivity `AggregateOrderSensitivity::Beneficial` can still produce
845 /// the correct result with possibly more work internally.
846 ///
847 /// # Returns
848 ///
849 /// Returns `Ok(Some(updated_udf))` if the process completes successfully.
850 /// If the expression can benefit from existing input ordering, but does
851 /// not implement the method, returns an error. Order insensitive and hard
852 /// requirement aggregators return `Ok(None)`.
853 fn with_beneficial_ordering(
854 self: Arc<Self>,
855 _beneficial_ordering: bool,
856 ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
857 if self.order_sensitivity().is_beneficial() {
858 return exec_err!(
859 "Should implement with satisfied for aggregator :{:?}",
860 self.name()
861 );
862 }
863 Ok(None)
864 }
865
866 /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
867 /// for possible options.
868 fn order_sensitivity(&self) -> AggregateOrderSensitivity {
869 // We have hard ordering requirements by default, meaning that order
870 // sensitive UDFs need their input orderings to satisfy their ordering
871 // requirements to generate correct results.
872 AggregateOrderSensitivity::HardRequirement
873 }
874
875 /// Optionally apply per-UDaF simplification / rewrite rules.
876 ///
877 /// This can be used to apply function specific simplification rules during
878 /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
879 /// implementation does nothing.
880 ///
881 /// Note that DataFusion handles simplifying arguments and "constant
882 /// folding" (replacing a function call with constant arguments such as
883 /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
884 /// optimizations manually for specific UDFs.
885 ///
886 /// # Returns
887 ///
888 /// [None] if simplify is not defined or,
889 ///
890 /// Or, a closure with two arguments:
891 /// * 'aggregate_function': [crate::expr::AggregateFunction] for which simplified has been invoked
892 /// * 'info': [crate::simplify::SimplifyInfo]
893 ///
894 /// closure returns simplified [Expr] or an error.
895 ///
896 fn simplify(&self) -> Option<AggregateFunctionSimplification> {
897 None
898 }
899
900 /// Returns the reverse expression of the aggregate function.
901 fn reverse_expr(&self) -> ReversedUDAF {
902 ReversedUDAF::NotSupported
903 }
904
905 /// Coerce arguments of a function call to types that the function can evaluate.
906 ///
907 /// This function is only called if [`AggregateUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
908 /// UDAFs should return one of the other variants of `TypeSignature` which handle common
909 /// cases
910 ///
911 /// See the [type coercion module](crate::type_coercion)
912 /// documentation for more details on type coercion
913 ///
914 /// For example, if your function requires a floating point arguments, but the user calls
915 /// it like `my_func(1::int)` (aka with `1` as an integer), coerce_types could return `[DataType::Float64]`
916 /// to ensure the argument was cast to `1::double`
917 ///
918 /// # Parameters
919 /// * `arg_types`: The argument types of the arguments this function with
920 ///
921 /// # Return value
922 /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
923 /// arguments to these specific types.
924 fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
925 not_impl_err!("Function {} does not implement coerce_types", self.name())
926 }
927
928 /// If this function is max, return true
929 /// If the function is min, return false
930 /// Otherwise return None (the default)
931 ///
932 ///
933 /// Note: this is used to use special aggregate implementations in certain conditions
934 fn is_descending(&self) -> Option<bool> {
935 None
936 }
937
938 /// Return the value of this aggregate function if it can be determined
939 /// entirely from statistics and arguments.
940 ///
941 /// Using a [`ScalarValue`] rather than a runtime computation can significantly
942 /// improving query performance.
943 ///
944 /// For example, if the minimum value of column `x` is known to be `42` from
945 /// statistics, then the aggregate `MIN(x)` should return `Some(ScalarValue(42))`
946 fn value_from_stats(&self, _statistics_args: &StatisticsArgs) -> Option<ScalarValue> {
947 None
948 }
949
950 /// Returns default value of the function given the input is all `null`.
951 ///
952 /// Most of the aggregate function return Null if input is Null,
953 /// while `count` returns 0 if input is Null
954 fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
955 ScalarValue::try_from(data_type)
956 }
957
958 /// If this function supports `[IGNORE NULLS | RESPECT NULLS]` clause, return true
959 /// If the function does not, return false
960 fn supports_null_handling_clause(&self) -> bool {
961 true
962 }
963
964 /// If this function is ordered-set aggregate function, return true
965 /// If the function is not, return false
966 fn is_ordered_set_aggregate(&self) -> bool {
967 false
968 }
969
970 /// Returns the documentation for this Aggregate UDF.
971 ///
972 /// Documentation can be accessed programmatically as well as
973 /// generating publicly facing documentation.
974 fn documentation(&self) -> Option<&Documentation> {
975 None
976 }
977
978 /// Indicates whether the aggregation function is monotonic as a set
979 /// function. See [`SetMonotonicity`] for details.
980 fn set_monotonicity(&self, _data_type: &DataType) -> SetMonotonicity {
981 SetMonotonicity::NotMonotonic
982 }
983}
984
985impl PartialEq for dyn AggregateUDFImpl {
986 fn eq(&self, other: &Self) -> bool {
987 self.dyn_eq(other.as_any())
988 }
989}
990
991// TODO (https://github.com/apache/datafusion/issues/17064) PartialOrd is not consistent with PartialEq for `dyn AggregateUDFImpl` and it should be
992// Manual implementation of `PartialOrd`
993// There might be some wackiness with it, but this is based on the impl of eq for AggregateUDFImpl
994// https://users.rust-lang.org/t/how-to-compare-two-trait-objects-for-equality/88063/5
995impl PartialOrd for dyn AggregateUDFImpl {
996 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
997 match self.name().partial_cmp(other.name()) {
998 Some(Ordering::Equal) => self.signature().partial_cmp(other.signature()),
999 cmp => cmp,
1000 }
1001 }
1002}
1003
1004pub enum ReversedUDAF {
1005 /// The expression is the same as the original expression, like SUM, COUNT
1006 Identical,
1007 /// The expression does not support reverse calculation
1008 NotSupported,
1009 /// The expression is different from the original expression
1010 Reversed(Arc<AggregateUDF>),
1011}
1012
1013/// AggregateUDF that adds an alias to the underlying function. It is better to
1014/// implement [`AggregateUDFImpl`], which supports aliases, directly if possible.
1015#[derive(Debug, PartialEq, Eq, Hash)]
1016struct AliasedAggregateUDFImpl {
1017 inner: UdfEq<Arc<dyn AggregateUDFImpl>>,
1018 aliases: Vec<String>,
1019}
1020
1021impl AliasedAggregateUDFImpl {
1022 pub fn new(
1023 inner: Arc<dyn AggregateUDFImpl>,
1024 new_aliases: impl IntoIterator<Item = &'static str>,
1025 ) -> Self {
1026 let mut aliases = inner.aliases().to_vec();
1027 aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
1028
1029 Self {
1030 inner: inner.into(),
1031 aliases,
1032 }
1033 }
1034}
1035
1036#[warn(clippy::missing_trait_methods)] // Delegates, so it should implement every single trait method
1037impl AggregateUDFImpl for AliasedAggregateUDFImpl {
1038 fn as_any(&self) -> &dyn Any {
1039 self
1040 }
1041
1042 fn name(&self) -> &str {
1043 self.inner.name()
1044 }
1045
1046 fn signature(&self) -> &Signature {
1047 self.inner.signature()
1048 }
1049
1050 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
1051 self.inner.return_type(arg_types)
1052 }
1053
1054 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
1055 self.inner.accumulator(acc_args)
1056 }
1057
1058 fn aliases(&self) -> &[String] {
1059 &self.aliases
1060 }
1061
1062 fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
1063 self.inner.schema_name(params)
1064 }
1065
1066 fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
1067 self.inner.human_display(params)
1068 }
1069
1070 fn window_function_schema_name(
1071 &self,
1072 params: &WindowFunctionParams,
1073 ) -> Result<String> {
1074 self.inner.window_function_schema_name(params)
1075 }
1076
1077 fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
1078 self.inner.display_name(params)
1079 }
1080
1081 fn window_function_display_name(
1082 &self,
1083 params: &WindowFunctionParams,
1084 ) -> Result<String> {
1085 self.inner.window_function_display_name(params)
1086 }
1087
1088 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1089 self.inner.state_fields(args)
1090 }
1091
1092 fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
1093 self.inner.groups_accumulator_supported(args)
1094 }
1095
1096 fn create_groups_accumulator(
1097 &self,
1098 args: AccumulatorArgs,
1099 ) -> Result<Box<dyn GroupsAccumulator>> {
1100 self.inner.create_groups_accumulator(args)
1101 }
1102
1103 fn create_sliding_accumulator(
1104 &self,
1105 args: AccumulatorArgs,
1106 ) -> Result<Box<dyn Accumulator>> {
1107 self.inner.accumulator(args)
1108 }
1109
1110 fn with_beneficial_ordering(
1111 self: Arc<Self>,
1112 beneficial_ordering: bool,
1113 ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
1114 Arc::clone(&self.inner)
1115 .with_beneficial_ordering(beneficial_ordering)
1116 .map(|udf| {
1117 udf.map(|udf| {
1118 Arc::new(AliasedAggregateUDFImpl {
1119 inner: udf.into(),
1120 aliases: self.aliases.clone(),
1121 }) as Arc<dyn AggregateUDFImpl>
1122 })
1123 })
1124 }
1125
1126 fn order_sensitivity(&self) -> AggregateOrderSensitivity {
1127 self.inner.order_sensitivity()
1128 }
1129
1130 fn simplify(&self) -> Option<AggregateFunctionSimplification> {
1131 self.inner.simplify()
1132 }
1133
1134 fn reverse_expr(&self) -> ReversedUDAF {
1135 self.inner.reverse_expr()
1136 }
1137
1138 fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
1139 self.inner.coerce_types(arg_types)
1140 }
1141
1142 fn return_field(&self, arg_fields: &[FieldRef]) -> Result<FieldRef> {
1143 self.inner.return_field(arg_fields)
1144 }
1145
1146 fn is_nullable(&self) -> bool {
1147 self.inner.is_nullable()
1148 }
1149
1150 fn is_descending(&self) -> Option<bool> {
1151 self.inner.is_descending()
1152 }
1153
1154 fn value_from_stats(&self, statistics_args: &StatisticsArgs) -> Option<ScalarValue> {
1155 self.inner.value_from_stats(statistics_args)
1156 }
1157
1158 fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
1159 self.inner.default_value(data_type)
1160 }
1161
1162 fn supports_null_handling_clause(&self) -> bool {
1163 self.inner.supports_null_handling_clause()
1164 }
1165
1166 fn is_ordered_set_aggregate(&self) -> bool {
1167 self.inner.is_ordered_set_aggregate()
1168 }
1169
1170 fn set_monotonicity(&self, data_type: &DataType) -> SetMonotonicity {
1171 self.inner.set_monotonicity(data_type)
1172 }
1173
1174 fn documentation(&self) -> Option<&Documentation> {
1175 self.inner.documentation()
1176 }
1177}
1178
1179// Aggregate UDF doc sections for use in public documentation
1180pub mod aggregate_doc_sections {
1181 use crate::DocSection;
1182
1183 pub fn doc_sections() -> Vec<DocSection> {
1184 vec![
1185 DOC_SECTION_GENERAL,
1186 DOC_SECTION_STATISTICAL,
1187 DOC_SECTION_APPROXIMATE,
1188 ]
1189 }
1190
1191 pub const DOC_SECTION_GENERAL: DocSection = DocSection {
1192 include: true,
1193 label: "General Functions",
1194 description: None,
1195 };
1196
1197 pub const DOC_SECTION_STATISTICAL: DocSection = DocSection {
1198 include: true,
1199 label: "Statistical Functions",
1200 description: None,
1201 };
1202
1203 pub const DOC_SECTION_APPROXIMATE: DocSection = DocSection {
1204 include: true,
1205 label: "Approximate Functions",
1206 description: None,
1207 };
1208}
1209
1210/// Indicates whether an aggregation function is monotonic as a set
1211/// function. A set function is monotonically increasing if its value
1212/// increases as its argument grows (as a set). Formally, `f` is a
1213/// monotonically increasing set function if `f(S) >= f(T)` whenever `S`
1214/// is a superset of `T`.
1215///
1216/// For example `COUNT` and `MAX` are monotonically increasing as their
1217/// values always increase (or stay the same) as new values are seen. On
1218/// the other hand, `MIN` is monotonically decreasing as its value always
1219/// decreases or stays the same as new values are seen.
1220#[derive(Debug, Clone, PartialEq)]
1221pub enum SetMonotonicity {
1222 /// Aggregate value increases or stays the same as the input set grows.
1223 Increasing,
1224 /// Aggregate value decreases or stays the same as the input set grows.
1225 Decreasing,
1226 /// Aggregate value may increase, decrease, or stay the same as the input
1227 /// set grows.
1228 NotMonotonic,
1229}
1230
1231#[cfg(test)]
1232mod test {
1233 use crate::{AggregateUDF, AggregateUDFImpl};
1234 use arrow::datatypes::{DataType, FieldRef};
1235 use datafusion_common::Result;
1236 use datafusion_expr_common::accumulator::Accumulator;
1237 use datafusion_expr_common::signature::{Signature, Volatility};
1238 use datafusion_functions_aggregate_common::accumulator::{
1239 AccumulatorArgs, StateFieldsArgs,
1240 };
1241 use std::any::Any;
1242 use std::cmp::Ordering;
1243 use std::hash::{DefaultHasher, Hash, Hasher};
1244
1245 #[derive(Debug, Clone, PartialEq, Eq, Hash)]
1246 struct AMeanUdf {
1247 signature: Signature,
1248 }
1249
1250 impl AMeanUdf {
1251 fn new() -> Self {
1252 Self {
1253 signature: Signature::uniform(
1254 1,
1255 vec![DataType::Float64],
1256 Volatility::Immutable,
1257 ),
1258 }
1259 }
1260 }
1261
1262 impl AggregateUDFImpl for AMeanUdf {
1263 fn as_any(&self) -> &dyn Any {
1264 self
1265 }
1266 fn name(&self) -> &str {
1267 "a"
1268 }
1269 fn signature(&self) -> &Signature {
1270 &self.signature
1271 }
1272 fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1273 unimplemented!()
1274 }
1275 fn accumulator(
1276 &self,
1277 _acc_args: AccumulatorArgs,
1278 ) -> Result<Box<dyn Accumulator>> {
1279 unimplemented!()
1280 }
1281 fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1282 unimplemented!()
1283 }
1284 }
1285
1286 #[derive(Debug, Clone, PartialEq, Eq, Hash)]
1287 struct BMeanUdf {
1288 signature: Signature,
1289 }
1290 impl BMeanUdf {
1291 fn new() -> Self {
1292 Self {
1293 signature: Signature::uniform(
1294 1,
1295 vec![DataType::Float64],
1296 Volatility::Immutable,
1297 ),
1298 }
1299 }
1300 }
1301
1302 impl AggregateUDFImpl for BMeanUdf {
1303 fn as_any(&self) -> &dyn Any {
1304 self
1305 }
1306 fn name(&self) -> &str {
1307 "b"
1308 }
1309 fn signature(&self) -> &Signature {
1310 &self.signature
1311 }
1312 fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1313 unimplemented!()
1314 }
1315 fn accumulator(
1316 &self,
1317 _acc_args: AccumulatorArgs,
1318 ) -> Result<Box<dyn Accumulator>> {
1319 unimplemented!()
1320 }
1321 fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1322 unimplemented!()
1323 }
1324 }
1325
1326 #[test]
1327 fn test_partial_eq() {
1328 let a1 = AggregateUDF::from(AMeanUdf::new());
1329 let a2 = AggregateUDF::from(AMeanUdf::new());
1330 let eq = a1 == a2;
1331 assert!(eq);
1332 assert_eq!(a1, a2);
1333 assert_eq!(hash(a1), hash(a2));
1334 }
1335
1336 #[test]
1337 fn test_partial_ord() {
1338 // Test validates that partial ord is defined for AggregateUDF using the name and signature,
1339 // not intended to exhaustively test all possibilities
1340 let a1 = AggregateUDF::from(AMeanUdf::new());
1341 let a2 = AggregateUDF::from(AMeanUdf::new());
1342 assert_eq!(a1.partial_cmp(&a2), Some(Ordering::Equal));
1343
1344 let b1 = AggregateUDF::from(BMeanUdf::new());
1345 assert!(a1 < b1);
1346 assert!(!(a1 == b1));
1347 }
1348
1349 fn hash<T: Hash>(value: T) -> u64 {
1350 let hasher = &mut DefaultHasher::new();
1351 value.hash(hasher);
1352 hasher.finish()
1353 }
1354}