1use std::any::Any;
21use std::borrow::Cow;
22use std::cmp::Ordering;
23use std::collections::{HashMap, HashSet};
24use std::iter::once;
25use std::sync::Arc;
26
27use crate::dml::CopyTo;
28use crate::expr::{Alias, PlannedReplaceSelectItem, Sort as SortExpr};
29use crate::expr_rewriter::{
30 coerce_plan_expr_for_schema, normalize_col,
31 normalize_col_with_schemas_and_ambiguity_check, normalize_cols, normalize_sorts,
32 rewrite_sort_cols_by_aggs,
33};
34use crate::logical_plan::{
35 Aggregate, Analyze, Distinct, DistinctOn, EmptyRelation, Explain, Filter, Join,
36 JoinConstraint, JoinType, Limit, LogicalPlan, Partitioning, PlanType, Prepare,
37 Projection, Repartition, Sort, SubqueryAlias, TableScan, Union, Unnest, Values,
38 Window,
39};
40use crate::select_expr::SelectExpr;
41use crate::utils::{
42 can_hash, columnize_expr, compare_sort_expr, expand_qualified_wildcard,
43 expand_wildcard, expr_to_columns, find_valid_equijoin_key_pair,
44 group_window_expr_by_sort_keys,
45};
46use crate::{
47 and, binary_expr, lit, DmlStatement, ExplainOption, Expr, ExprSchemable, Operator,
48 RecursiveQuery, Statement, TableProviderFilterPushDown, TableSource, WriteOp,
49};
50
51use super::dml::InsertOp;
52use arrow::compute::can_cast_types;
53use arrow::datatypes::{DataType, Field, Fields, Schema, SchemaRef};
54use datafusion_common::display::ToStringifiedPlan;
55use datafusion_common::file_options::file_type::FileType;
56use datafusion_common::{
57 exec_err, get_target_functional_dependencies, not_impl_err, plan_datafusion_err,
58 plan_err, Column, Constraints, DFSchema, DFSchemaRef, DataFusionError, NullEquality,
59 Result, ScalarValue, TableReference, ToDFSchema, UnnestOptions,
60};
61use datafusion_expr_common::type_coercion::binary::type_union_resolution;
62
63use indexmap::IndexSet;
64
65pub const UNNAMED_TABLE: &str = "?table?";
67
68#[derive(Default, Debug, Clone)]
70pub struct LogicalPlanBuilderOptions {
71 add_implicit_group_by_exprs: bool,
74}
75
76impl LogicalPlanBuilderOptions {
77 pub fn new() -> Self {
78 Default::default()
79 }
80
81 pub fn with_add_implicit_group_by_exprs(mut self, add: bool) -> Self {
83 self.add_implicit_group_by_exprs = add;
84 self
85 }
86}
87
88#[derive(Debug, Clone)]
126pub struct LogicalPlanBuilder {
127 plan: Arc<LogicalPlan>,
128 options: LogicalPlanBuilderOptions,
129}
130
131impl LogicalPlanBuilder {
132 pub fn new(plan: LogicalPlan) -> Self {
134 Self {
135 plan: Arc::new(plan),
136 options: LogicalPlanBuilderOptions::default(),
137 }
138 }
139
140 pub fn new_from_arc(plan: Arc<LogicalPlan>) -> Self {
142 Self {
143 plan,
144 options: LogicalPlanBuilderOptions::default(),
145 }
146 }
147
148 pub fn with_options(mut self, options: LogicalPlanBuilderOptions) -> Self {
149 self.options = options;
150 self
151 }
152
153 pub fn schema(&self) -> &DFSchemaRef {
155 self.plan.schema()
156 }
157
158 pub fn plan(&self) -> &LogicalPlan {
160 &self.plan
161 }
162
163 pub fn empty(produce_one_row: bool) -> Self {
167 Self::new(LogicalPlan::EmptyRelation(EmptyRelation {
168 produce_one_row,
169 schema: DFSchemaRef::new(DFSchema::empty()),
170 }))
171 }
172
173 pub fn to_recursive_query(
176 self,
177 name: String,
178 recursive_term: LogicalPlan,
179 is_distinct: bool,
180 ) -> Result<Self> {
181 if is_distinct {
183 return not_impl_err!(
184 "Recursive queries with a distinct 'UNION' (in which the previous iteration's results will be de-duplicated) is not supported"
185 );
186 }
187 let static_fields_len = self.plan.schema().fields().len();
189 let recursive_fields_len = recursive_term.schema().fields().len();
190 if static_fields_len != recursive_fields_len {
191 return plan_err!(
192 "Non-recursive term and recursive term must have the same number of columns ({} != {})",
193 static_fields_len, recursive_fields_len
194 );
195 }
196 let coerced_recursive_term =
198 coerce_plan_expr_for_schema(recursive_term, self.plan.schema())?;
199 Ok(Self::from(LogicalPlan::RecursiveQuery(RecursiveQuery {
200 name,
201 static_term: self.plan,
202 recursive_term: Arc::new(coerced_recursive_term),
203 is_distinct,
204 })))
205 }
206
207 pub fn values(values: Vec<Vec<Expr>>) -> Result<Self> {
215 if values.is_empty() {
216 return plan_err!("Values list cannot be empty");
217 }
218 let n_cols = values[0].len();
219 if n_cols == 0 {
220 return plan_err!("Values list cannot be zero length");
221 }
222 for (i, row) in values.iter().enumerate() {
223 if row.len() != n_cols {
224 return plan_err!(
225 "Inconsistent data length across values list: got {} values in row {} but expected {}",
226 row.len(),
227 i,
228 n_cols
229 );
230 }
231 }
232
233 Self::infer_data(values)
235 }
236
237 pub fn values_with_schema(
247 values: Vec<Vec<Expr>>,
248 schema: &DFSchemaRef,
249 ) -> Result<Self> {
250 if values.is_empty() {
251 return plan_err!("Values list cannot be empty");
252 }
253 let n_cols = schema.fields().len();
254 if n_cols == 0 {
255 return plan_err!("Values list cannot be zero length");
256 }
257 for (i, row) in values.iter().enumerate() {
258 if row.len() != n_cols {
259 return plan_err!(
260 "Inconsistent data length across values list: got {} values in row {} but expected {}",
261 row.len(),
262 i,
263 n_cols
264 );
265 }
266 }
267
268 Self::infer_values_from_schema(values, schema)
270 }
271
272 fn infer_values_from_schema(
273 values: Vec<Vec<Expr>>,
274 schema: &DFSchema,
275 ) -> Result<Self> {
276 let n_cols = values[0].len();
277 let mut fields = ValuesFields::new();
278 for j in 0..n_cols {
279 let field_type = schema.field(j).data_type();
280 let field_nullable = schema.field(j).is_nullable();
281 for row in values.iter() {
282 let value = &row[j];
283 let data_type = value.get_type(schema)?;
284
285 if !data_type.equals_datatype(field_type) {
286 if can_cast_types(&data_type, field_type) {
287 } else {
288 return exec_err!(
289 "type mismatch and can't cast to got {} and {}",
290 data_type,
291 field_type
292 );
293 }
294 }
295 }
296 fields.push(field_type.to_owned(), field_nullable);
297 }
298
299 Self::infer_inner(values, fields, schema)
300 }
301
302 fn infer_data(values: Vec<Vec<Expr>>) -> Result<Self> {
303 let n_cols = values[0].len();
304 let schema = DFSchema::empty();
305 let mut fields = ValuesFields::new();
306
307 for j in 0..n_cols {
308 let mut common_type: Option<DataType> = None;
309 for (i, row) in values.iter().enumerate() {
310 let value = &row[j];
311 let data_type = value.get_type(&schema)?;
312 if data_type == DataType::Null {
313 continue;
314 }
315
316 if let Some(prev_type) = common_type {
317 let data_types = vec![prev_type.clone(), data_type.clone()];
319 let Some(new_type) = type_union_resolution(&data_types) else {
320 return plan_err!("Inconsistent data type across values list at row {i} column {j}. Was {prev_type} but found {data_type}");
321 };
322 common_type = Some(new_type);
323 } else {
324 common_type = Some(data_type);
325 }
326 }
327 fields.push(common_type.unwrap_or(DataType::Null), true);
330 }
331
332 Self::infer_inner(values, fields, &schema)
333 }
334
335 fn infer_inner(
336 mut values: Vec<Vec<Expr>>,
337 fields: ValuesFields,
338 schema: &DFSchema,
339 ) -> Result<Self> {
340 let fields = fields.into_fields();
341 for row in &mut values {
343 for (j, field_type) in fields.iter().map(|f| f.data_type()).enumerate() {
344 if let Expr::Literal(ScalarValue::Null, metadata) = &row[j] {
345 row[j] = Expr::Literal(
346 ScalarValue::try_from(field_type)?,
347 metadata.clone(),
348 );
349 } else {
350 row[j] = std::mem::take(&mut row[j]).cast_to(field_type, schema)?;
351 }
352 }
353 }
354
355 let dfschema = DFSchema::from_unqualified_fields(fields, HashMap::new())?;
356 let schema = DFSchemaRef::new(dfschema);
357
358 Ok(Self::new(LogicalPlan::Values(Values { schema, values })))
359 }
360
361 pub fn scan(
394 table_name: impl Into<TableReference>,
395 table_source: Arc<dyn TableSource>,
396 projection: Option<Vec<usize>>,
397 ) -> Result<Self> {
398 Self::scan_with_filters(table_name, table_source, projection, vec![])
399 }
400
401 pub fn copy_to(
403 input: LogicalPlan,
404 output_url: String,
405 file_type: Arc<dyn FileType>,
406 options: HashMap<String, String>,
407 partition_by: Vec<String>,
408 ) -> Result<Self> {
409 Ok(Self::new(LogicalPlan::Copy(CopyTo::new(
410 Arc::new(input),
411 output_url,
412 partition_by,
413 file_type,
414 options,
415 ))))
416 }
417
418 pub fn insert_into(
453 input: LogicalPlan,
454 table_name: impl Into<TableReference>,
455 target: Arc<dyn TableSource>,
456 insert_op: InsertOp,
457 ) -> Result<Self> {
458 Ok(Self::new(LogicalPlan::Dml(DmlStatement::new(
459 table_name.into(),
460 target,
461 WriteOp::Insert(insert_op),
462 Arc::new(input),
463 ))))
464 }
465
466 pub fn scan_with_filters(
468 table_name: impl Into<TableReference>,
469 table_source: Arc<dyn TableSource>,
470 projection: Option<Vec<usize>>,
471 filters: Vec<Expr>,
472 ) -> Result<Self> {
473 Self::scan_with_filters_inner(table_name, table_source, projection, filters, None)
474 }
475
476 pub fn scan_with_filters_fetch(
478 table_name: impl Into<TableReference>,
479 table_source: Arc<dyn TableSource>,
480 projection: Option<Vec<usize>>,
481 filters: Vec<Expr>,
482 fetch: Option<usize>,
483 ) -> Result<Self> {
484 Self::scan_with_filters_inner(
485 table_name,
486 table_source,
487 projection,
488 filters,
489 fetch,
490 )
491 }
492
493 fn scan_with_filters_inner(
494 table_name: impl Into<TableReference>,
495 table_source: Arc<dyn TableSource>,
496 projection: Option<Vec<usize>>,
497 filters: Vec<Expr>,
498 fetch: Option<usize>,
499 ) -> Result<Self> {
500 let table_scan =
501 TableScan::try_new(table_name, table_source, projection, filters, fetch)?;
502
503 if table_scan.filters.is_empty() {
505 if let Some(p) = table_scan.source.get_logical_plan() {
506 let sub_plan = p.into_owned();
507
508 if let Some(proj) = table_scan.projection {
509 let projection_exprs = proj
510 .into_iter()
511 .map(|i| {
512 Expr::Column(Column::from(
513 sub_plan.schema().qualified_field(i),
514 ))
515 })
516 .collect::<Vec<_>>();
517 return Self::new(sub_plan)
518 .project(projection_exprs)?
519 .alias(table_scan.table_name);
520 }
521
522 return Self::new(sub_plan).alias(table_scan.table_name);
526 }
527 }
528
529 Ok(Self::new(LogicalPlan::TableScan(table_scan)))
530 }
531
532 pub fn window_plan(
534 input: LogicalPlan,
535 window_exprs: impl IntoIterator<Item = Expr>,
536 ) -> Result<LogicalPlan> {
537 let mut plan = input;
538 let mut groups = group_window_expr_by_sort_keys(window_exprs)?;
539 groups.sort_by(|(key_a, _), (key_b, _)| {
545 for ((first, _), (second, _)) in key_a.iter().zip(key_b.iter()) {
546 let key_ordering = compare_sort_expr(first, second, plan.schema());
547 match key_ordering {
548 Ordering::Less => {
549 return Ordering::Less;
550 }
551 Ordering::Greater => {
552 return Ordering::Greater;
553 }
554 Ordering::Equal => {}
555 }
556 }
557 key_b.len().cmp(&key_a.len())
558 });
559 for (_, exprs) in groups {
560 let window_exprs = exprs.into_iter().collect::<Vec<_>>();
561 plan = LogicalPlanBuilder::from(plan)
564 .window(window_exprs)?
565 .build()?;
566 }
567 Ok(plan)
568 }
569
570 pub fn project(
572 self,
573 expr: impl IntoIterator<Item = impl Into<SelectExpr>>,
574 ) -> Result<Self> {
575 project(Arc::unwrap_or_clone(self.plan), expr).map(Self::new)
576 }
577
578 pub fn project_with_validation(
581 self,
582 expr: Vec<(impl Into<SelectExpr>, bool)>,
583 ) -> Result<Self> {
584 project_with_validation(Arc::unwrap_or_clone(self.plan), expr).map(Self::new)
585 }
586
587 pub fn select(self, indices: impl IntoIterator<Item = usize>) -> Result<Self> {
589 let exprs: Vec<_> = indices
590 .into_iter()
591 .map(|x| Expr::Column(Column::from(self.plan.schema().qualified_field(x))))
592 .collect();
593 self.project(exprs)
594 }
595
596 pub fn filter(self, expr: impl Into<Expr>) -> Result<Self> {
598 let expr = normalize_col(expr.into(), &self.plan)?;
599 Filter::try_new(expr, self.plan)
600 .map(LogicalPlan::Filter)
601 .map(Self::new)
602 }
603
604 pub fn having(self, expr: impl Into<Expr>) -> Result<Self> {
606 let expr = normalize_col(expr.into(), &self.plan)?;
607 Filter::try_new(expr, self.plan)
608 .map(LogicalPlan::Filter)
609 .map(Self::from)
610 }
611
612 pub fn prepare(self, name: String, data_types: Vec<DataType>) -> Result<Self> {
614 Ok(Self::new(LogicalPlan::Statement(Statement::Prepare(
615 Prepare {
616 name,
617 data_types,
618 input: self.plan,
619 },
620 ))))
621 }
622
623 pub fn limit(self, skip: usize, fetch: Option<usize>) -> Result<Self> {
630 let skip_expr = if skip == 0 {
631 None
632 } else {
633 Some(lit(skip as i64))
634 };
635 let fetch_expr = fetch.map(|f| lit(f as i64));
636 self.limit_by_expr(skip_expr, fetch_expr)
637 }
638
639 pub fn limit_by_expr(self, skip: Option<Expr>, fetch: Option<Expr>) -> Result<Self> {
643 Ok(Self::new(LogicalPlan::Limit(Limit {
644 skip: skip.map(Box::new),
645 fetch: fetch.map(Box::new),
646 input: self.plan,
647 })))
648 }
649
650 pub fn alias(self, alias: impl Into<TableReference>) -> Result<Self> {
652 subquery_alias(Arc::unwrap_or_clone(self.plan), alias).map(Self::new)
653 }
654
655 fn add_missing_columns(
684 curr_plan: LogicalPlan,
685 missing_cols: &IndexSet<Column>,
686 is_distinct: bool,
687 ) -> Result<LogicalPlan> {
688 match curr_plan {
689 LogicalPlan::Projection(Projection {
690 input,
691 mut expr,
692 schema: _,
693 }) if missing_cols.iter().all(|c| input.schema().has_column(c)) => {
694 let mut missing_exprs = missing_cols
695 .iter()
696 .map(|c| normalize_col(Expr::Column(c.clone()), &input))
697 .collect::<Result<Vec<_>>>()?;
698
699 missing_exprs.retain(|e| !expr.contains(e));
703 if is_distinct {
704 Self::ambiguous_distinct_check(&missing_exprs, missing_cols, &expr)?;
705 }
706 expr.extend(missing_exprs);
707 project(Arc::unwrap_or_clone(input), expr)
708 }
709 _ => {
710 let is_distinct =
711 is_distinct || matches!(curr_plan, LogicalPlan::Distinct(_));
712 let new_inputs = curr_plan
713 .inputs()
714 .into_iter()
715 .map(|input_plan| {
716 Self::add_missing_columns(
717 (*input_plan).clone(),
718 missing_cols,
719 is_distinct,
720 )
721 })
722 .collect::<Result<Vec<_>>>()?;
723 curr_plan.with_new_exprs(curr_plan.expressions(), new_inputs)
724 }
725 }
726 }
727
728 fn ambiguous_distinct_check(
729 missing_exprs: &[Expr],
730 missing_cols: &IndexSet<Column>,
731 projection_exprs: &[Expr],
732 ) -> Result<()> {
733 if missing_exprs.is_empty() {
734 return Ok(());
735 }
736
737 let all_aliases = missing_exprs.iter().all(|e| {
745 projection_exprs.iter().any(|proj_expr| {
746 if let Expr::Alias(Alias { expr, .. }) = proj_expr {
747 e == expr.as_ref()
748 } else {
749 false
750 }
751 })
752 });
753 if all_aliases {
754 return Ok(());
755 }
756
757 let missing_col_names = missing_cols
758 .iter()
759 .map(|col| col.flat_name())
760 .collect::<String>();
761
762 plan_err!("For SELECT DISTINCT, ORDER BY expressions {missing_col_names} must appear in select list")
763 }
764
765 pub fn sort_by(
767 self,
768 expr: impl IntoIterator<Item = impl Into<Expr>> + Clone,
769 ) -> Result<Self> {
770 self.sort(
771 expr.into_iter()
772 .map(|e| e.into().sort(true, false))
773 .collect::<Vec<SortExpr>>(),
774 )
775 }
776
777 pub fn sort(
778 self,
779 sorts: impl IntoIterator<Item = impl Into<SortExpr>> + Clone,
780 ) -> Result<Self> {
781 self.sort_with_limit(sorts, None)
782 }
783
784 pub fn sort_with_limit(
786 self,
787 sorts: impl IntoIterator<Item = impl Into<SortExpr>> + Clone,
788 fetch: Option<usize>,
789 ) -> Result<Self> {
790 let sorts = rewrite_sort_cols_by_aggs(sorts, &self.plan)?;
791
792 let schema = self.plan.schema();
793
794 let mut missing_cols: IndexSet<Column> = IndexSet::new();
796 sorts.iter().try_for_each::<_, Result<()>>(|sort| {
797 let columns = sort.expr.column_refs();
798
799 missing_cols.extend(
800 columns
801 .into_iter()
802 .filter(|c| !schema.has_column(c))
803 .cloned(),
804 );
805
806 Ok(())
807 })?;
808
809 if missing_cols.is_empty() {
810 return Ok(Self::new(LogicalPlan::Sort(Sort {
811 expr: normalize_sorts(sorts, &self.plan)?,
812 input: self.plan,
813 fetch,
814 })));
815 }
816
817 let new_expr = schema.columns().into_iter().map(Expr::Column).collect();
819
820 let is_distinct = false;
821 let plan = Self::add_missing_columns(
822 Arc::unwrap_or_clone(self.plan),
823 &missing_cols,
824 is_distinct,
825 )?;
826
827 let sort_plan = LogicalPlan::Sort(Sort {
828 expr: normalize_sorts(sorts, &plan)?,
829 input: Arc::new(plan),
830 fetch,
831 });
832
833 Projection::try_new(new_expr, Arc::new(sort_plan))
834 .map(LogicalPlan::Projection)
835 .map(Self::new)
836 }
837
838 pub fn union(self, plan: LogicalPlan) -> Result<Self> {
840 union(Arc::unwrap_or_clone(self.plan), plan).map(Self::new)
841 }
842
843 pub fn union_by_name(self, plan: LogicalPlan) -> Result<Self> {
845 union_by_name(Arc::unwrap_or_clone(self.plan), plan).map(Self::new)
846 }
847
848 pub fn union_by_name_distinct(self, plan: LogicalPlan) -> Result<Self> {
850 let left_plan: LogicalPlan = Arc::unwrap_or_clone(self.plan);
851 let right_plan: LogicalPlan = plan;
852
853 Ok(Self::new(LogicalPlan::Distinct(Distinct::All(Arc::new(
854 union_by_name(left_plan, right_plan)?,
855 )))))
856 }
857
858 pub fn union_distinct(self, plan: LogicalPlan) -> Result<Self> {
860 let left_plan: LogicalPlan = Arc::unwrap_or_clone(self.plan);
861 let right_plan: LogicalPlan = plan;
862
863 Ok(Self::new(LogicalPlan::Distinct(Distinct::All(Arc::new(
864 union(left_plan, right_plan)?,
865 )))))
866 }
867
868 pub fn distinct(self) -> Result<Self> {
870 Ok(Self::new(LogicalPlan::Distinct(Distinct::All(self.plan))))
871 }
872
873 pub fn distinct_on(
876 self,
877 on_expr: Vec<Expr>,
878 select_expr: Vec<Expr>,
879 sort_expr: Option<Vec<SortExpr>>,
880 ) -> Result<Self> {
881 Ok(Self::new(LogicalPlan::Distinct(Distinct::On(
882 DistinctOn::try_new(on_expr, select_expr, sort_expr, self.plan)?,
883 ))))
884 }
885
886 pub fn join(
900 self,
901 right: LogicalPlan,
902 join_type: JoinType,
903 join_keys: (Vec<impl Into<Column>>, Vec<impl Into<Column>>),
904 filter: Option<Expr>,
905 ) -> Result<Self> {
906 self.join_detailed(
907 right,
908 join_type,
909 join_keys,
910 filter,
911 NullEquality::NullEqualsNothing,
912 )
913 }
914
915 pub fn join_on(
956 self,
957 right: LogicalPlan,
958 join_type: JoinType,
959 on_exprs: impl IntoIterator<Item = Expr>,
960 ) -> Result<Self> {
961 let filter = on_exprs.into_iter().reduce(Expr::and);
962
963 self.join_detailed(
964 right,
965 join_type,
966 (Vec::<Column>::new(), Vec::<Column>::new()),
967 filter,
968 NullEquality::NullEqualsNothing,
969 )
970 }
971
972 pub(crate) fn normalize(plan: &LogicalPlan, column: Column) -> Result<Column> {
973 if column.relation.is_some() {
974 return Ok(column);
976 }
977
978 let schema = plan.schema();
979 let fallback_schemas = plan.fallback_normalize_schemas();
980 let using_columns = plan.using_columns()?;
981 column.normalize_with_schemas_and_ambiguity_check(
982 &[&[schema], &fallback_schemas],
983 &using_columns,
984 )
985 }
986
987 pub fn join_detailed(
994 self,
995 right: LogicalPlan,
996 join_type: JoinType,
997 join_keys: (Vec<impl Into<Column>>, Vec<impl Into<Column>>),
998 filter: Option<Expr>,
999 null_equality: NullEquality,
1000 ) -> Result<Self> {
1001 if join_keys.0.len() != join_keys.1.len() {
1002 return plan_err!("left_keys and right_keys were not the same length");
1003 }
1004
1005 let filter = if let Some(expr) = filter {
1006 let filter = normalize_col_with_schemas_and_ambiguity_check(
1007 expr,
1008 &[&[self.schema(), right.schema()]],
1009 &[],
1010 )?;
1011 Some(filter)
1012 } else {
1013 None
1014 };
1015
1016 let (left_keys, right_keys): (Vec<Result<Column>>, Vec<Result<Column>>) =
1017 join_keys
1018 .0
1019 .into_iter()
1020 .zip(join_keys.1)
1021 .map(|(l, r)| {
1022 let l = l.into();
1023 let r = r.into();
1024
1025 match (&l.relation, &r.relation) {
1026 (Some(lr), Some(rr)) => {
1027 let l_is_left =
1028 self.plan.schema().field_with_qualified_name(lr, &l.name);
1029 let l_is_right =
1030 right.schema().field_with_qualified_name(lr, &l.name);
1031 let r_is_left =
1032 self.plan.schema().field_with_qualified_name(rr, &r.name);
1033 let r_is_right =
1034 right.schema().field_with_qualified_name(rr, &r.name);
1035
1036 match (l_is_left, l_is_right, r_is_left, r_is_right) {
1037 (_, Ok(_), Ok(_), _) => (Ok(r), Ok(l)),
1038 (Ok(_), _, _, Ok(_)) => (Ok(l), Ok(r)),
1039 _ => (
1040 Self::normalize(&self.plan, l),
1041 Self::normalize(&right, r),
1042 ),
1043 }
1044 }
1045 (Some(lr), None) => {
1046 let l_is_left =
1047 self.plan.schema().field_with_qualified_name(lr, &l.name);
1048 let l_is_right =
1049 right.schema().field_with_qualified_name(lr, &l.name);
1050
1051 match (l_is_left, l_is_right) {
1052 (Ok(_), _) => (Ok(l), Self::normalize(&right, r)),
1053 (_, Ok(_)) => (Self::normalize(&self.plan, r), Ok(l)),
1054 _ => (
1055 Self::normalize(&self.plan, l),
1056 Self::normalize(&right, r),
1057 ),
1058 }
1059 }
1060 (None, Some(rr)) => {
1061 let r_is_left =
1062 self.plan.schema().field_with_qualified_name(rr, &r.name);
1063 let r_is_right =
1064 right.schema().field_with_qualified_name(rr, &r.name);
1065
1066 match (r_is_left, r_is_right) {
1067 (Ok(_), _) => (Ok(r), Self::normalize(&right, l)),
1068 (_, Ok(_)) => (Self::normalize(&self.plan, l), Ok(r)),
1069 _ => (
1070 Self::normalize(&self.plan, l),
1071 Self::normalize(&right, r),
1072 ),
1073 }
1074 }
1075 (None, None) => {
1076 let mut swap = false;
1077 let left_key = Self::normalize(&self.plan, l.clone())
1078 .or_else(|_| {
1079 swap = true;
1080 Self::normalize(&right, l)
1081 });
1082 if swap {
1083 (Self::normalize(&self.plan, r), left_key)
1084 } else {
1085 (left_key, Self::normalize(&right, r))
1086 }
1087 }
1088 }
1089 })
1090 .unzip();
1091
1092 let left_keys = left_keys.into_iter().collect::<Result<Vec<Column>>>()?;
1093 let right_keys = right_keys.into_iter().collect::<Result<Vec<Column>>>()?;
1094
1095 let on: Vec<_> = left_keys
1096 .into_iter()
1097 .zip(right_keys)
1098 .map(|(l, r)| (Expr::Column(l), Expr::Column(r)))
1099 .collect();
1100 let join_schema =
1101 build_join_schema(self.plan.schema(), right.schema(), &join_type)?;
1102
1103 if join_type != JoinType::Inner && on.is_empty() && filter.is_none() {
1105 return plan_err!("join condition should not be empty");
1106 }
1107
1108 Ok(Self::new(LogicalPlan::Join(Join {
1109 left: self.plan,
1110 right: Arc::new(right),
1111 on,
1112 filter,
1113 join_type,
1114 join_constraint: JoinConstraint::On,
1115 schema: DFSchemaRef::new(join_schema),
1116 null_equality,
1117 })))
1118 }
1119
1120 pub fn join_using(
1122 self,
1123 right: LogicalPlan,
1124 join_type: JoinType,
1125 using_keys: Vec<Column>,
1126 ) -> Result<Self> {
1127 let left_keys: Vec<Column> = using_keys
1128 .clone()
1129 .into_iter()
1130 .map(|c| Self::normalize(&self.plan, c))
1131 .collect::<Result<_>>()?;
1132 let right_keys: Vec<Column> = using_keys
1133 .into_iter()
1134 .map(|c| Self::normalize(&right, c))
1135 .collect::<Result<_>>()?;
1136
1137 let on: Vec<(_, _)> = left_keys.into_iter().zip(right_keys).collect();
1138 let mut join_on: Vec<(Expr, Expr)> = vec![];
1139 let mut filters: Option<Expr> = None;
1140 for (l, r) in &on {
1141 if self.plan.schema().has_column(l)
1142 && right.schema().has_column(r)
1143 && can_hash(
1144 datafusion_common::ExprSchema::field_from_column(
1145 self.plan.schema(),
1146 l,
1147 )?
1148 .data_type(),
1149 )
1150 {
1151 join_on.push((Expr::Column(l.clone()), Expr::Column(r.clone())));
1152 } else if self.plan.schema().has_column(l)
1153 && right.schema().has_column(r)
1154 && can_hash(
1155 datafusion_common::ExprSchema::field_from_column(
1156 self.plan.schema(),
1157 r,
1158 )?
1159 .data_type(),
1160 )
1161 {
1162 join_on.push((Expr::Column(r.clone()), Expr::Column(l.clone())));
1163 } else {
1164 let expr = binary_expr(
1165 Expr::Column(l.clone()),
1166 Operator::Eq,
1167 Expr::Column(r.clone()),
1168 );
1169 match filters {
1170 None => filters = Some(expr),
1171 Some(filter_expr) => filters = Some(and(expr, filter_expr)),
1172 }
1173 }
1174 }
1175
1176 if join_on.is_empty() {
1177 let join = Self::from(self.plan).cross_join(right)?;
1178 join.filter(filters.ok_or_else(|| {
1179 DataFusionError::Internal("filters should not be None here".to_string())
1180 })?)
1181 } else {
1182 let join = Join::try_new(
1183 self.plan,
1184 Arc::new(right),
1185 join_on,
1186 filters,
1187 join_type,
1188 JoinConstraint::Using,
1189 NullEquality::NullEqualsNothing,
1190 )?;
1191
1192 Ok(Self::new(LogicalPlan::Join(join)))
1193 }
1194 }
1195
1196 pub fn cross_join(self, right: LogicalPlan) -> Result<Self> {
1198 let join = Join::try_new(
1199 self.plan,
1200 Arc::new(right),
1201 vec![],
1202 None,
1203 JoinType::Inner,
1204 JoinConstraint::On,
1205 NullEquality::NullEqualsNothing,
1206 )?;
1207
1208 Ok(Self::new(LogicalPlan::Join(join)))
1209 }
1210
1211 pub fn repartition(self, partitioning_scheme: Partitioning) -> Result<Self> {
1213 Ok(Self::new(LogicalPlan::Repartition(Repartition {
1214 input: self.plan,
1215 partitioning_scheme,
1216 })))
1217 }
1218
1219 pub fn window(
1221 self,
1222 window_expr: impl IntoIterator<Item = impl Into<Expr>>,
1223 ) -> Result<Self> {
1224 let window_expr = normalize_cols(window_expr, &self.plan)?;
1225 validate_unique_names("Windows", &window_expr)?;
1226 Ok(Self::new(LogicalPlan::Window(Window::try_new(
1227 window_expr,
1228 self.plan,
1229 )?)))
1230 }
1231
1232 pub fn aggregate(
1236 self,
1237 group_expr: impl IntoIterator<Item = impl Into<Expr>>,
1238 aggr_expr: impl IntoIterator<Item = impl Into<Expr>>,
1239 ) -> Result<Self> {
1240 let group_expr = normalize_cols(group_expr, &self.plan)?;
1241 let aggr_expr = normalize_cols(aggr_expr, &self.plan)?;
1242
1243 let group_expr = if self.options.add_implicit_group_by_exprs {
1244 add_group_by_exprs_from_dependencies(group_expr, self.plan.schema())?
1245 } else {
1246 group_expr
1247 };
1248
1249 Aggregate::try_new(self.plan, group_expr, aggr_expr)
1250 .map(LogicalPlan::Aggregate)
1251 .map(Self::new)
1252 }
1253
1254 pub fn explain(self, verbose: bool, analyze: bool) -> Result<Self> {
1261 self.explain_option_format(
1263 ExplainOption::default()
1264 .with_verbose(verbose)
1265 .with_analyze(analyze),
1266 )
1267 }
1268
1269 pub fn explain_option_format(self, explain_option: ExplainOption) -> Result<Self> {
1273 let schema = LogicalPlan::explain_schema();
1274 let schema = schema.to_dfschema_ref()?;
1275
1276 if explain_option.analyze {
1277 Ok(Self::new(LogicalPlan::Analyze(Analyze {
1278 verbose: explain_option.verbose,
1279 input: self.plan,
1280 schema,
1281 })))
1282 } else {
1283 let stringified_plans =
1284 vec![self.plan.to_stringified(PlanType::InitialLogicalPlan)];
1285
1286 Ok(Self::new(LogicalPlan::Explain(Explain {
1287 verbose: explain_option.verbose,
1288 plan: self.plan,
1289 explain_format: explain_option.format,
1290 stringified_plans,
1291 schema,
1292 logical_optimization_succeeded: false,
1293 })))
1294 }
1295 }
1296
1297 pub fn intersect(
1299 left_plan: LogicalPlan,
1300 right_plan: LogicalPlan,
1301 is_all: bool,
1302 ) -> Result<LogicalPlan> {
1303 LogicalPlanBuilder::intersect_or_except(
1304 left_plan,
1305 right_plan,
1306 JoinType::LeftSemi,
1307 is_all,
1308 )
1309 }
1310
1311 pub fn except(
1313 left_plan: LogicalPlan,
1314 right_plan: LogicalPlan,
1315 is_all: bool,
1316 ) -> Result<LogicalPlan> {
1317 LogicalPlanBuilder::intersect_or_except(
1318 left_plan,
1319 right_plan,
1320 JoinType::LeftAnti,
1321 is_all,
1322 )
1323 }
1324
1325 fn intersect_or_except(
1327 left_plan: LogicalPlan,
1328 right_plan: LogicalPlan,
1329 join_type: JoinType,
1330 is_all: bool,
1331 ) -> Result<LogicalPlan> {
1332 let left_len = left_plan.schema().fields().len();
1333 let right_len = right_plan.schema().fields().len();
1334
1335 if left_len != right_len {
1336 return plan_err!(
1337 "INTERSECT/EXCEPT query must have the same number of columns. Left is {left_len} and right is {right_len}."
1338 );
1339 }
1340
1341 let join_keys = left_plan
1342 .schema()
1343 .fields()
1344 .iter()
1345 .zip(right_plan.schema().fields().iter())
1346 .map(|(left_field, right_field)| {
1347 (
1348 (Column::from_name(left_field.name())),
1349 (Column::from_name(right_field.name())),
1350 )
1351 })
1352 .unzip();
1353 if is_all {
1354 LogicalPlanBuilder::from(left_plan)
1355 .join_detailed(
1356 right_plan,
1357 join_type,
1358 join_keys,
1359 None,
1360 NullEquality::NullEqualsNull,
1361 )?
1362 .build()
1363 } else {
1364 LogicalPlanBuilder::from(left_plan)
1365 .distinct()?
1366 .join_detailed(
1367 right_plan,
1368 join_type,
1369 join_keys,
1370 None,
1371 NullEquality::NullEqualsNull,
1372 )?
1373 .build()
1374 }
1375 }
1376
1377 pub fn build(self) -> Result<LogicalPlan> {
1379 Ok(Arc::unwrap_or_clone(self.plan))
1380 }
1381
1382 pub fn join_with_expr_keys(
1397 self,
1398 right: LogicalPlan,
1399 join_type: JoinType,
1400 equi_exprs: (Vec<impl Into<Expr>>, Vec<impl Into<Expr>>),
1401 filter: Option<Expr>,
1402 ) -> Result<Self> {
1403 if equi_exprs.0.len() != equi_exprs.1.len() {
1404 return plan_err!("left_keys and right_keys were not the same length");
1405 }
1406
1407 let join_key_pairs = equi_exprs
1408 .0
1409 .into_iter()
1410 .zip(equi_exprs.1)
1411 .map(|(l, r)| {
1412 let left_key = l.into();
1413 let right_key = r.into();
1414 let mut left_using_columns = HashSet::new();
1415 expr_to_columns(&left_key, &mut left_using_columns)?;
1416 let normalized_left_key = normalize_col_with_schemas_and_ambiguity_check(
1417 left_key,
1418 &[&[self.plan.schema()]],
1419 &[],
1420 )?;
1421
1422 let mut right_using_columns = HashSet::new();
1423 expr_to_columns(&right_key, &mut right_using_columns)?;
1424 let normalized_right_key = normalize_col_with_schemas_and_ambiguity_check(
1425 right_key,
1426 &[&[right.schema()]],
1427 &[],
1428 )?;
1429
1430 find_valid_equijoin_key_pair(
1432 &normalized_left_key,
1433 &normalized_right_key,
1434 self.plan.schema(),
1435 right.schema(),
1436 )?.ok_or_else(||
1437 plan_datafusion_err!(
1438 "can't create join plan, join key should belong to one input, error key: ({normalized_left_key},{normalized_right_key})"
1439 ))
1440 })
1441 .collect::<Result<Vec<_>>>()?;
1442
1443 let join = Join::try_new(
1444 self.plan,
1445 Arc::new(right),
1446 join_key_pairs,
1447 filter,
1448 join_type,
1449 JoinConstraint::On,
1450 NullEquality::NullEqualsNothing,
1451 )?;
1452
1453 Ok(Self::new(LogicalPlan::Join(join)))
1454 }
1455
1456 pub fn unnest_column(self, column: impl Into<Column>) -> Result<Self> {
1458 unnest(Arc::unwrap_or_clone(self.plan), vec![column.into()]).map(Self::new)
1459 }
1460
1461 pub fn unnest_column_with_options(
1463 self,
1464 column: impl Into<Column>,
1465 options: UnnestOptions,
1466 ) -> Result<Self> {
1467 unnest_with_options(
1468 Arc::unwrap_or_clone(self.plan),
1469 vec![column.into()],
1470 options,
1471 )
1472 .map(Self::new)
1473 }
1474
1475 pub fn unnest_columns_with_options(
1477 self,
1478 columns: Vec<Column>,
1479 options: UnnestOptions,
1480 ) -> Result<Self> {
1481 unnest_with_options(Arc::unwrap_or_clone(self.plan), columns, options)
1482 .map(Self::new)
1483 }
1484}
1485
1486impl From<LogicalPlan> for LogicalPlanBuilder {
1487 fn from(plan: LogicalPlan) -> Self {
1488 LogicalPlanBuilder::new(plan)
1489 }
1490}
1491
1492impl From<Arc<LogicalPlan>> for LogicalPlanBuilder {
1493 fn from(plan: Arc<LogicalPlan>) -> Self {
1494 LogicalPlanBuilder::new_from_arc(plan)
1495 }
1496}
1497
1498#[derive(Default)]
1500struct ValuesFields {
1501 inner: Vec<Field>,
1502}
1503
1504impl ValuesFields {
1505 pub fn new() -> Self {
1506 Self::default()
1507 }
1508
1509 pub fn push(&mut self, data_type: DataType, nullable: bool) {
1510 let name = format!("column{}", self.inner.len() + 1);
1513 self.inner.push(Field::new(name, data_type, nullable));
1514 }
1515
1516 pub fn into_fields(self) -> Fields {
1517 self.inner.into()
1518 }
1519}
1520
1521pub fn unique_field_aliases(fields: &Fields) -> Vec<Option<String>> {
1533 let mut name_map = HashMap::<&str, usize>::new();
1541 let mut seen = HashSet::<Cow<String>>::new();
1543
1544 fields
1545 .iter()
1546 .map(|field| {
1547 let original_name = field.name();
1548 let mut name = Cow::Borrowed(original_name);
1549
1550 let count = name_map.entry(original_name).or_insert(0);
1551
1552 while seen.contains(&name) {
1554 *count += 1;
1555 name = Cow::Owned(format!("{original_name}:{count}"));
1556 }
1557
1558 seen.insert(name.clone());
1559
1560 match name {
1561 Cow::Borrowed(_) => None,
1562 Cow::Owned(alias) => Some(alias),
1563 }
1564 })
1565 .collect()
1566}
1567
1568fn mark_field(schema: &DFSchema) -> (Option<TableReference>, Arc<Field>) {
1569 let mut table_references = schema
1570 .iter()
1571 .filter_map(|(qualifier, _)| qualifier)
1572 .collect::<Vec<_>>();
1573 table_references.dedup();
1574 let table_reference = if table_references.len() == 1 {
1575 table_references.pop().cloned()
1576 } else {
1577 None
1578 };
1579
1580 (
1581 table_reference,
1582 Arc::new(Field::new("mark", DataType::Boolean, false)),
1583 )
1584}
1585
1586pub fn build_join_schema(
1589 left: &DFSchema,
1590 right: &DFSchema,
1591 join_type: &JoinType,
1592) -> Result<DFSchema> {
1593 fn nullify_fields<'a>(
1594 fields: impl Iterator<Item = (Option<&'a TableReference>, &'a Arc<Field>)>,
1595 ) -> Vec<(Option<TableReference>, Arc<Field>)> {
1596 fields
1597 .map(|(q, f)| {
1598 let field = f.as_ref().clone().with_nullable(true);
1600 (q.cloned(), Arc::new(field))
1601 })
1602 .collect()
1603 }
1604
1605 let right_fields = right.iter();
1606 let left_fields = left.iter();
1607
1608 let qualified_fields: Vec<(Option<TableReference>, Arc<Field>)> = match join_type {
1609 JoinType::Inner => {
1610 let left_fields = left_fields
1612 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1613 .collect::<Vec<_>>();
1614 let right_fields = right_fields
1615 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1616 .collect::<Vec<_>>();
1617 left_fields.into_iter().chain(right_fields).collect()
1618 }
1619 JoinType::Left => {
1620 let left_fields = left_fields
1622 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1623 .collect::<Vec<_>>();
1624 left_fields
1625 .into_iter()
1626 .chain(nullify_fields(right_fields))
1627 .collect()
1628 }
1629 JoinType::Right => {
1630 let right_fields = right_fields
1632 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1633 .collect::<Vec<_>>();
1634 nullify_fields(left_fields)
1635 .into_iter()
1636 .chain(right_fields)
1637 .collect()
1638 }
1639 JoinType::Full => {
1640 nullify_fields(left_fields)
1642 .into_iter()
1643 .chain(nullify_fields(right_fields))
1644 .collect()
1645 }
1646 JoinType::LeftSemi | JoinType::LeftAnti => {
1647 left_fields
1649 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1650 .collect()
1651 }
1652 JoinType::LeftMark => left_fields
1653 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1654 .chain(once(mark_field(right)))
1655 .collect(),
1656 JoinType::RightSemi | JoinType::RightAnti => {
1657 right_fields
1659 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1660 .collect()
1661 }
1662 JoinType::RightMark => right_fields
1663 .map(|(q, f)| (q.cloned(), Arc::clone(f)))
1664 .chain(once(mark_field(left)))
1665 .collect(),
1666 };
1667 let func_dependencies = left.functional_dependencies().join(
1668 right.functional_dependencies(),
1669 join_type,
1670 left.fields().len(),
1671 );
1672
1673 let (schema1, schema2) = match join_type {
1674 JoinType::Right | JoinType::RightSemi | JoinType::RightAnti => (left, right),
1675 _ => (right, left),
1676 };
1677
1678 let metadata = schema1
1679 .metadata()
1680 .clone()
1681 .into_iter()
1682 .chain(schema2.metadata().clone())
1683 .collect();
1684
1685 let dfschema = DFSchema::new_with_metadata(qualified_fields, metadata)?;
1686 dfschema.with_functional_dependencies(func_dependencies)
1687}
1688
1689pub fn requalify_sides_if_needed(
1699 left: LogicalPlanBuilder,
1700 right: LogicalPlanBuilder,
1701) -> Result<(LogicalPlanBuilder, LogicalPlanBuilder, bool)> {
1702 let left_cols = left.schema().columns();
1703 let right_cols = right.schema().columns();
1704 if left_cols.iter().any(|l| {
1705 right_cols.iter().any(|r| {
1706 l == r || (l.name == r.name && (l.relation.is_none() || r.relation.is_none()))
1707 })
1708 }) {
1709 Ok((
1712 left.alias(TableReference::bare("left"))?,
1713 right.alias(TableReference::bare("right"))?,
1714 true,
1715 ))
1716 } else {
1717 Ok((left, right, false))
1718 }
1719}
1720
1721pub fn add_group_by_exprs_from_dependencies(
1731 mut group_expr: Vec<Expr>,
1732 schema: &DFSchemaRef,
1733) -> Result<Vec<Expr>> {
1734 let mut group_by_field_names = group_expr
1737 .iter()
1738 .map(|e| e.schema_name().to_string())
1739 .collect::<Vec<_>>();
1740
1741 if let Some(target_indices) =
1742 get_target_functional_dependencies(schema, &group_by_field_names)
1743 {
1744 for idx in target_indices {
1745 let expr = Expr::Column(Column::from(schema.qualified_field(idx)));
1746 let expr_name = expr.schema_name().to_string();
1747 if !group_by_field_names.contains(&expr_name) {
1748 group_by_field_names.push(expr_name);
1749 group_expr.push(expr);
1750 }
1751 }
1752 }
1753 Ok(group_expr)
1754}
1755
1756pub fn validate_unique_names<'a>(
1758 node_name: &str,
1759 expressions: impl IntoIterator<Item = &'a Expr>,
1760) -> Result<()> {
1761 let mut unique_names = HashMap::new();
1762
1763 expressions.into_iter().enumerate().try_for_each(|(position, expr)| {
1764 let name = expr.schema_name().to_string();
1765 match unique_names.get(&name) {
1766 None => {
1767 unique_names.insert(name, (position, expr));
1768 Ok(())
1769 },
1770 Some((existing_position, existing_expr)) => {
1771 plan_err!("{node_name} require unique expression names \
1772 but the expression \"{existing_expr}\" at position {existing_position} and \"{expr}\" \
1773 at position {position} have the same name. Consider aliasing (\"AS\") one of them."
1774 )
1775 }
1776 }
1777 })
1778}
1779
1780pub fn union(left_plan: LogicalPlan, right_plan: LogicalPlan) -> Result<LogicalPlan> {
1792 Ok(LogicalPlan::Union(Union::try_new_with_loose_types(vec![
1793 Arc::new(left_plan),
1794 Arc::new(right_plan),
1795 ])?))
1796}
1797
1798pub fn union_by_name(
1801 left_plan: LogicalPlan,
1802 right_plan: LogicalPlan,
1803) -> Result<LogicalPlan> {
1804 Ok(LogicalPlan::Union(Union::try_new_by_name(vec![
1805 Arc::new(left_plan),
1806 Arc::new(right_plan),
1807 ])?))
1808}
1809
1810pub fn project(
1816 plan: LogicalPlan,
1817 expr: impl IntoIterator<Item = impl Into<SelectExpr>>,
1818) -> Result<LogicalPlan> {
1819 project_with_validation(plan, expr.into_iter().map(|e| (e, true)))
1820}
1821
1822fn project_with_validation(
1830 plan: LogicalPlan,
1831 expr: impl IntoIterator<Item = (impl Into<SelectExpr>, bool)>,
1832) -> Result<LogicalPlan> {
1833 let mut projected_expr = vec![];
1834 for (e, validate) in expr {
1835 let e = e.into();
1836 match e {
1837 SelectExpr::Wildcard(opt) => {
1838 let expanded = expand_wildcard(plan.schema(), &plan, Some(&opt))?;
1839
1840 let expanded = if let Some(replace) = opt.replace {
1843 replace_columns(expanded, &replace)?
1844 } else {
1845 expanded
1846 };
1847
1848 for e in expanded {
1849 if validate {
1850 projected_expr
1851 .push(columnize_expr(normalize_col(e, &plan)?, &plan)?)
1852 } else {
1853 projected_expr.push(e)
1854 }
1855 }
1856 }
1857 SelectExpr::QualifiedWildcard(table_ref, opt) => {
1858 let expanded =
1859 expand_qualified_wildcard(&table_ref, plan.schema(), Some(&opt))?;
1860
1861 let expanded = if let Some(replace) = opt.replace {
1864 replace_columns(expanded, &replace)?
1865 } else {
1866 expanded
1867 };
1868
1869 for e in expanded {
1870 if validate {
1871 projected_expr
1872 .push(columnize_expr(normalize_col(e, &plan)?, &plan)?)
1873 } else {
1874 projected_expr.push(e)
1875 }
1876 }
1877 }
1878 SelectExpr::Expression(e) => {
1879 if validate {
1880 projected_expr.push(columnize_expr(normalize_col(e, &plan)?, &plan)?)
1881 } else {
1882 projected_expr.push(e)
1883 }
1884 }
1885 }
1886 }
1887 validate_unique_names("Projections", projected_expr.iter())?;
1888
1889 Projection::try_new(projected_expr, Arc::new(plan)).map(LogicalPlan::Projection)
1890}
1891
1892fn replace_columns(
1897 mut exprs: Vec<Expr>,
1898 replace: &PlannedReplaceSelectItem,
1899) -> Result<Vec<Expr>> {
1900 for expr in exprs.iter_mut() {
1901 if let Expr::Column(Column { name, .. }) = expr {
1902 if let Some((_, new_expr)) = replace
1903 .items()
1904 .iter()
1905 .zip(replace.expressions().iter())
1906 .find(|(item, _)| item.column_name.value == *name)
1907 {
1908 *expr = new_expr.clone().alias(name.clone())
1909 }
1910 }
1911 }
1912 Ok(exprs)
1913}
1914
1915pub fn subquery_alias(
1917 plan: LogicalPlan,
1918 alias: impl Into<TableReference>,
1919) -> Result<LogicalPlan> {
1920 SubqueryAlias::try_new(Arc::new(plan), alias).map(LogicalPlan::SubqueryAlias)
1921}
1922
1923pub fn table_scan(
1926 name: Option<impl Into<TableReference>>,
1927 table_schema: &Schema,
1928 projection: Option<Vec<usize>>,
1929) -> Result<LogicalPlanBuilder> {
1930 table_scan_with_filters(name, table_schema, projection, vec![])
1931}
1932
1933pub fn table_scan_with_filters(
1937 name: Option<impl Into<TableReference>>,
1938 table_schema: &Schema,
1939 projection: Option<Vec<usize>>,
1940 filters: Vec<Expr>,
1941) -> Result<LogicalPlanBuilder> {
1942 let table_source = table_source(table_schema);
1943 let name = name
1944 .map(|n| n.into())
1945 .unwrap_or_else(|| TableReference::bare(UNNAMED_TABLE));
1946 LogicalPlanBuilder::scan_with_filters(name, table_source, projection, filters)
1947}
1948
1949pub fn table_scan_with_filter_and_fetch(
1953 name: Option<impl Into<TableReference>>,
1954 table_schema: &Schema,
1955 projection: Option<Vec<usize>>,
1956 filters: Vec<Expr>,
1957 fetch: Option<usize>,
1958) -> Result<LogicalPlanBuilder> {
1959 let table_source = table_source(table_schema);
1960 let name = name
1961 .map(|n| n.into())
1962 .unwrap_or_else(|| TableReference::bare(UNNAMED_TABLE));
1963 LogicalPlanBuilder::scan_with_filters_fetch(
1964 name,
1965 table_source,
1966 projection,
1967 filters,
1968 fetch,
1969 )
1970}
1971
1972pub fn table_source(table_schema: &Schema) -> Arc<dyn TableSource> {
1973 let table_schema = Arc::new(table_schema.clone());
1974 Arc::new(LogicalTableSource {
1975 table_schema,
1976 constraints: Default::default(),
1977 })
1978}
1979
1980pub fn table_source_with_constraints(
1981 table_schema: &Schema,
1982 constraints: Constraints,
1983) -> Arc<dyn TableSource> {
1984 let table_schema = Arc::new(table_schema.clone());
1985 Arc::new(LogicalTableSource {
1986 table_schema,
1987 constraints,
1988 })
1989}
1990
1991pub fn wrap_projection_for_join_if_necessary(
1993 join_keys: &[Expr],
1994 input: LogicalPlan,
1995) -> Result<(LogicalPlan, Vec<Column>, bool)> {
1996 let input_schema = input.schema();
1997 let alias_join_keys: Vec<Expr> = join_keys
1998 .iter()
1999 .map(|key| {
2000 if matches!(key, Expr::Cast(_)) || matches!(key, Expr::TryCast(_)) {
2009 let alias = format!("{key}");
2010 key.clone().alias(alias)
2011 } else {
2012 key.clone()
2013 }
2014 })
2015 .collect::<Vec<_>>();
2016
2017 let need_project = join_keys.iter().any(|key| !matches!(key, Expr::Column(_)));
2018 let plan = if need_project {
2019 let mut projection = input_schema
2021 .columns()
2022 .into_iter()
2023 .map(Expr::Column)
2024 .collect::<Vec<_>>();
2025 let join_key_items = alias_join_keys
2026 .iter()
2027 .flat_map(|expr| expr.try_as_col().is_none().then_some(expr))
2028 .cloned()
2029 .collect::<HashSet<Expr>>();
2030 projection.extend(join_key_items);
2031
2032 LogicalPlanBuilder::from(input)
2033 .project(projection.into_iter().map(SelectExpr::from))?
2034 .build()?
2035 } else {
2036 input
2037 };
2038
2039 let join_on = alias_join_keys
2040 .into_iter()
2041 .map(|key| {
2042 if let Some(col) = key.try_as_col() {
2043 Ok(col.clone())
2044 } else {
2045 let name = key.schema_name().to_string();
2046 Ok(Column::from_name(name))
2047 }
2048 })
2049 .collect::<Result<Vec<_>>>()?;
2050
2051 Ok((plan, join_on, need_project))
2052}
2053
2054pub struct LogicalTableSource {
2058 table_schema: SchemaRef,
2059 constraints: Constraints,
2060}
2061
2062impl LogicalTableSource {
2063 pub fn new(table_schema: SchemaRef) -> Self {
2065 Self {
2066 table_schema,
2067 constraints: Constraints::default(),
2068 }
2069 }
2070
2071 pub fn with_constraints(mut self, constraints: Constraints) -> Self {
2072 self.constraints = constraints;
2073 self
2074 }
2075}
2076
2077impl TableSource for LogicalTableSource {
2078 fn as_any(&self) -> &dyn Any {
2079 self
2080 }
2081
2082 fn schema(&self) -> SchemaRef {
2083 Arc::clone(&self.table_schema)
2084 }
2085
2086 fn constraints(&self) -> Option<&Constraints> {
2087 Some(&self.constraints)
2088 }
2089
2090 fn supports_filters_pushdown(
2091 &self,
2092 filters: &[&Expr],
2093 ) -> Result<Vec<TableProviderFilterPushDown>> {
2094 Ok(vec![TableProviderFilterPushDown::Exact; filters.len()])
2095 }
2096}
2097
2098pub fn unnest(input: LogicalPlan, columns: Vec<Column>) -> Result<LogicalPlan> {
2100 unnest_with_options(input, columns, UnnestOptions::default())
2101}
2102
2103pub fn get_struct_unnested_columns(
2104 col_name: &String,
2105 inner_fields: &Fields,
2106) -> Vec<Column> {
2107 inner_fields
2108 .iter()
2109 .map(|f| Column::from_name(format!("{}.{}", col_name, f.name())))
2110 .collect()
2111}
2112
2113pub fn unnest_with_options(
2143 input: LogicalPlan,
2144 columns_to_unnest: Vec<Column>,
2145 options: UnnestOptions,
2146) -> Result<LogicalPlan> {
2147 Ok(LogicalPlan::Unnest(Unnest::try_new(
2148 Arc::new(input),
2149 columns_to_unnest,
2150 options,
2151 )?))
2152}
2153
2154#[cfg(test)]
2155mod tests {
2156 use super::*;
2157 use crate::logical_plan::StringifiedPlan;
2158 use crate::{col, expr, expr_fn::exists, in_subquery, lit, scalar_subquery};
2159
2160 use crate::test::function_stub::sum;
2161 use datafusion_common::{Constraint, RecursionUnnestOption, SchemaError};
2162 use insta::assert_snapshot;
2163
2164 #[test]
2165 fn plan_builder_simple() -> Result<()> {
2166 let plan =
2167 table_scan(Some("employee_csv"), &employee_schema(), Some(vec![0, 3]))?
2168 .filter(col("state").eq(lit("CO")))?
2169 .project(vec![col("id")])?
2170 .build()?;
2171
2172 assert_snapshot!(plan, @r#"
2173 Projection: employee_csv.id
2174 Filter: employee_csv.state = Utf8("CO")
2175 TableScan: employee_csv projection=[id, state]
2176 "#);
2177
2178 Ok(())
2179 }
2180
2181 #[test]
2182 fn plan_builder_schema() {
2183 let schema = employee_schema();
2184 let projection = None;
2185 let plan =
2186 LogicalPlanBuilder::scan("employee_csv", table_source(&schema), projection)
2187 .unwrap();
2188 assert_snapshot!(plan.schema().as_ref(), @"fields:[employee_csv.id, employee_csv.first_name, employee_csv.last_name, employee_csv.state, employee_csv.salary], metadata:{}");
2189
2190 let projection = None;
2193 let plan =
2194 LogicalPlanBuilder::scan("EMPLOYEE_CSV", table_source(&schema), projection)
2195 .unwrap();
2196 assert_snapshot!(plan.schema().as_ref(), @"fields:[employee_csv.id, employee_csv.first_name, employee_csv.last_name, employee_csv.state, employee_csv.salary], metadata:{}");
2197 }
2198
2199 #[test]
2200 fn plan_builder_empty_name() {
2201 let schema = employee_schema();
2202 let projection = None;
2203 let err =
2204 LogicalPlanBuilder::scan("", table_source(&schema), projection).unwrap_err();
2205 assert_snapshot!(
2206 err.strip_backtrace(),
2207 @"Error during planning: table_name cannot be empty"
2208 );
2209 }
2210
2211 #[test]
2212 fn plan_builder_sort() -> Result<()> {
2213 let plan =
2214 table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?
2215 .sort(vec![
2216 expr::Sort::new(col("state"), true, true),
2217 expr::Sort::new(col("salary"), false, false),
2218 ])?
2219 .build()?;
2220
2221 assert_snapshot!(plan, @r"
2222 Sort: employee_csv.state ASC NULLS FIRST, employee_csv.salary DESC NULLS LAST
2223 TableScan: employee_csv projection=[state, salary]
2224 ");
2225
2226 Ok(())
2227 }
2228
2229 #[test]
2230 fn plan_builder_union() -> Result<()> {
2231 let plan =
2232 table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?;
2233
2234 let plan = plan
2235 .clone()
2236 .union(plan.clone().build()?)?
2237 .union(plan.clone().build()?)?
2238 .union(plan.build()?)?
2239 .build()?;
2240
2241 assert_snapshot!(plan, @r"
2242 Union
2243 Union
2244 Union
2245 TableScan: employee_csv projection=[state, salary]
2246 TableScan: employee_csv projection=[state, salary]
2247 TableScan: employee_csv projection=[state, salary]
2248 TableScan: employee_csv projection=[state, salary]
2249 ");
2250
2251 Ok(())
2252 }
2253
2254 #[test]
2255 fn plan_builder_union_distinct() -> Result<()> {
2256 let plan =
2257 table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?;
2258
2259 let plan = plan
2260 .clone()
2261 .union_distinct(plan.clone().build()?)?
2262 .union_distinct(plan.clone().build()?)?
2263 .union_distinct(plan.build()?)?
2264 .build()?;
2265
2266 assert_snapshot!(plan, @r"
2267 Distinct:
2268 Union
2269 Distinct:
2270 Union
2271 Distinct:
2272 Union
2273 TableScan: employee_csv projection=[state, salary]
2274 TableScan: employee_csv projection=[state, salary]
2275 TableScan: employee_csv projection=[state, salary]
2276 TableScan: employee_csv projection=[state, salary]
2277 ");
2278
2279 Ok(())
2280 }
2281
2282 #[test]
2283 fn plan_builder_simple_distinct() -> Result<()> {
2284 let plan =
2285 table_scan(Some("employee_csv"), &employee_schema(), Some(vec![0, 3]))?
2286 .filter(col("state").eq(lit("CO")))?
2287 .project(vec![col("id")])?
2288 .distinct()?
2289 .build()?;
2290
2291 assert_snapshot!(plan, @r#"
2292 Distinct:
2293 Projection: employee_csv.id
2294 Filter: employee_csv.state = Utf8("CO")
2295 TableScan: employee_csv projection=[id, state]
2296 "#);
2297
2298 Ok(())
2299 }
2300
2301 #[test]
2302 fn exists_subquery() -> Result<()> {
2303 let foo = test_table_scan_with_name("foo")?;
2304 let bar = test_table_scan_with_name("bar")?;
2305
2306 let subquery = LogicalPlanBuilder::from(foo)
2307 .project(vec![col("a")])?
2308 .filter(col("a").eq(col("bar.a")))?
2309 .build()?;
2310
2311 let outer_query = LogicalPlanBuilder::from(bar)
2312 .project(vec![col("a")])?
2313 .filter(exists(Arc::new(subquery)))?
2314 .build()?;
2315
2316 assert_snapshot!(outer_query, @r"
2317 Filter: EXISTS (<subquery>)
2318 Subquery:
2319 Filter: foo.a = bar.a
2320 Projection: foo.a
2321 TableScan: foo
2322 Projection: bar.a
2323 TableScan: bar
2324 ");
2325
2326 Ok(())
2327 }
2328
2329 #[test]
2330 fn filter_in_subquery() -> Result<()> {
2331 let foo = test_table_scan_with_name("foo")?;
2332 let bar = test_table_scan_with_name("bar")?;
2333
2334 let subquery = LogicalPlanBuilder::from(foo)
2335 .project(vec![col("a")])?
2336 .filter(col("a").eq(col("bar.a")))?
2337 .build()?;
2338
2339 let outer_query = LogicalPlanBuilder::from(bar)
2341 .project(vec![col("a")])?
2342 .filter(in_subquery(col("a"), Arc::new(subquery)))?
2343 .build()?;
2344
2345 assert_snapshot!(outer_query, @r"
2346 Filter: bar.a IN (<subquery>)
2347 Subquery:
2348 Filter: foo.a = bar.a
2349 Projection: foo.a
2350 TableScan: foo
2351 Projection: bar.a
2352 TableScan: bar
2353 ");
2354
2355 Ok(())
2356 }
2357
2358 #[test]
2359 fn select_scalar_subquery() -> Result<()> {
2360 let foo = test_table_scan_with_name("foo")?;
2361 let bar = test_table_scan_with_name("bar")?;
2362
2363 let subquery = LogicalPlanBuilder::from(foo)
2364 .project(vec![col("b")])?
2365 .filter(col("a").eq(col("bar.a")))?
2366 .build()?;
2367
2368 let outer_query = LogicalPlanBuilder::from(bar)
2370 .project(vec![scalar_subquery(Arc::new(subquery))])?
2371 .build()?;
2372
2373 assert_snapshot!(outer_query, @r"
2374 Projection: (<subquery>)
2375 Subquery:
2376 Filter: foo.a = bar.a
2377 Projection: foo.b
2378 TableScan: foo
2379 TableScan: bar
2380 ");
2381
2382 Ok(())
2383 }
2384
2385 #[test]
2386 fn projection_non_unique_names() -> Result<()> {
2387 let plan = table_scan(
2388 Some("employee_csv"),
2389 &employee_schema(),
2390 Some(vec![0, 1]),
2392 )?
2393 .project(vec![col("id"), col("first_name").alias("id")]);
2395
2396 match plan {
2397 Err(DataFusionError::SchemaError(err, _)) => {
2398 if let SchemaError::AmbiguousReference { field } = *err {
2399 let Column {
2400 relation,
2401 name,
2402 spans: _,
2403 } = *field;
2404 let Some(TableReference::Bare { table }) = relation else {
2405 return plan_err!(
2406 "wrong relation: {relation:?}, expected table name"
2407 );
2408 };
2409 assert_eq!(*"employee_csv", *table);
2410 assert_eq!("id", &name);
2411 Ok(())
2412 } else {
2413 plan_err!("Plan should have returned an DataFusionError::SchemaError")
2414 }
2415 }
2416 _ => plan_err!("Plan should have returned an DataFusionError::SchemaError"),
2417 }
2418 }
2419
2420 fn employee_schema() -> Schema {
2421 Schema::new(vec![
2422 Field::new("id", DataType::Int32, false),
2423 Field::new("first_name", DataType::Utf8, false),
2424 Field::new("last_name", DataType::Utf8, false),
2425 Field::new("state", DataType::Utf8, false),
2426 Field::new("salary", DataType::Int32, false),
2427 ])
2428 }
2429
2430 #[test]
2431 fn stringified_plan() {
2432 let stringified_plan =
2433 StringifiedPlan::new(PlanType::InitialLogicalPlan, "...the plan...");
2434 assert!(stringified_plan.should_display(true));
2435 assert!(!stringified_plan.should_display(false)); let stringified_plan =
2438 StringifiedPlan::new(PlanType::FinalLogicalPlan, "...the plan...");
2439 assert!(stringified_plan.should_display(true));
2440 assert!(stringified_plan.should_display(false)); let stringified_plan =
2443 StringifiedPlan::new(PlanType::InitialPhysicalPlan, "...the plan...");
2444 assert!(stringified_plan.should_display(true));
2445 assert!(!stringified_plan.should_display(false)); let stringified_plan =
2448 StringifiedPlan::new(PlanType::FinalPhysicalPlan, "...the plan...");
2449 assert!(stringified_plan.should_display(true));
2450 assert!(stringified_plan.should_display(false)); let stringified_plan = StringifiedPlan::new(
2453 PlanType::OptimizedLogicalPlan {
2454 optimizer_name: "random opt pass".into(),
2455 },
2456 "...the plan...",
2457 );
2458 assert!(stringified_plan.should_display(true));
2459 assert!(!stringified_plan.should_display(false));
2460 }
2461
2462 fn test_table_scan_with_name(name: &str) -> Result<LogicalPlan> {
2463 let schema = Schema::new(vec![
2464 Field::new("a", DataType::UInt32, false),
2465 Field::new("b", DataType::UInt32, false),
2466 Field::new("c", DataType::UInt32, false),
2467 ]);
2468 table_scan(Some(name), &schema, None)?.build()
2469 }
2470
2471 #[test]
2472 fn plan_builder_intersect_different_num_columns_error() -> Result<()> {
2473 let plan1 =
2474 table_scan(TableReference::none(), &employee_schema(), Some(vec![3]))?;
2475 let plan2 =
2476 table_scan(TableReference::none(), &employee_schema(), Some(vec![3, 4]))?;
2477
2478 let err_msg1 =
2479 LogicalPlanBuilder::intersect(plan1.build()?, plan2.build()?, true)
2480 .unwrap_err();
2481
2482 assert_snapshot!(err_msg1.strip_backtrace(), @"Error during planning: INTERSECT/EXCEPT query must have the same number of columns. Left is 1 and right is 2.");
2483
2484 Ok(())
2485 }
2486
2487 #[test]
2488 fn plan_builder_unnest() -> Result<()> {
2489 let err = nested_table_scan("test_table")?
2491 .unnest_column("scalar")
2492 .unwrap_err();
2493
2494 let DataFusionError::Internal(desc) = err else {
2495 return plan_err!("Plan should have returned an DataFusionError::Internal");
2496 };
2497
2498 let desc = desc
2499 .split(DataFusionError::BACK_TRACE_SEP)
2500 .collect::<Vec<&str>>()
2501 .first()
2502 .unwrap_or(&"")
2503 .to_string();
2504
2505 assert_snapshot!(desc, @"trying to unnest on invalid data type UInt32");
2506
2507 let plan = nested_table_scan("test_table")?
2509 .unnest_column("strings")?
2510 .build()?;
2511
2512 assert_snapshot!(plan, @r"
2513 Unnest: lists[test_table.strings|depth=1] structs[]
2514 TableScan: test_table
2515 ");
2516
2517 let field = plan.schema().field_with_name(None, "strings").unwrap();
2519 assert_eq!(&DataType::Utf8, field.data_type());
2520
2521 let plan = nested_table_scan("test_table")?
2523 .unnest_column("struct_singular")?
2524 .build()?;
2525
2526 assert_snapshot!(plan, @r"
2527 Unnest: lists[] structs[test_table.struct_singular]
2528 TableScan: test_table
2529 ");
2530
2531 for field_name in &["a", "b"] {
2532 let field = plan
2534 .schema()
2535 .field_with_name(None, &format!("struct_singular.{field_name}"))
2536 .unwrap();
2537 assert_eq!(&DataType::UInt32, field.data_type());
2538 }
2539
2540 let plan = nested_table_scan("test_table")?
2542 .unnest_column("strings")?
2543 .unnest_column("structs")?
2544 .unnest_column("struct_singular")?
2545 .build()?;
2546
2547 assert_snapshot!(plan, @r"
2548 Unnest: lists[] structs[test_table.struct_singular]
2549 Unnest: lists[test_table.structs|depth=1] structs[]
2550 Unnest: lists[test_table.strings|depth=1] structs[]
2551 TableScan: test_table
2552 ");
2553
2554 let field = plan.schema().field_with_name(None, "structs").unwrap();
2556 assert!(matches!(field.data_type(), DataType::Struct(_)));
2557
2558 let cols = vec!["strings", "structs", "struct_singular"]
2560 .into_iter()
2561 .map(|c| c.into())
2562 .collect();
2563
2564 let plan = nested_table_scan("test_table")?
2565 .unnest_columns_with_options(cols, UnnestOptions::default())?
2566 .build()?;
2567
2568 assert_snapshot!(plan, @r"
2569 Unnest: lists[test_table.strings|depth=1, test_table.structs|depth=1] structs[test_table.struct_singular]
2570 TableScan: test_table
2571 ");
2572
2573 let plan = nested_table_scan("test_table")?.unnest_column("missing");
2575 assert!(plan.is_err());
2576
2577 let plan = nested_table_scan("test_table")?
2579 .unnest_columns_with_options(
2580 vec!["stringss".into(), "struct_singular".into()],
2581 UnnestOptions::default()
2582 .with_recursions(RecursionUnnestOption {
2583 input_column: "stringss".into(),
2584 output_column: "stringss_depth_1".into(),
2585 depth: 1,
2586 })
2587 .with_recursions(RecursionUnnestOption {
2588 input_column: "stringss".into(),
2589 output_column: "stringss_depth_2".into(),
2590 depth: 2,
2591 }),
2592 )?
2593 .build()?;
2594
2595 assert_snapshot!(plan, @r"
2596 Unnest: lists[test_table.stringss|depth=1, test_table.stringss|depth=2] structs[test_table.struct_singular]
2597 TableScan: test_table
2598 ");
2599
2600 let field = plan
2602 .schema()
2603 .field_with_name(None, "stringss_depth_1")
2604 .unwrap();
2605 assert_eq!(
2606 &DataType::new_list(DataType::Utf8, false),
2607 field.data_type()
2608 );
2609 let field = plan
2610 .schema()
2611 .field_with_name(None, "stringss_depth_2")
2612 .unwrap();
2613 assert_eq!(&DataType::Utf8, field.data_type());
2614 for field_name in &["a", "b"] {
2616 let field = plan
2617 .schema()
2618 .field_with_name(None, &format!("struct_singular.{field_name}"))
2619 .unwrap();
2620 assert_eq!(&DataType::UInt32, field.data_type());
2621 }
2622
2623 Ok(())
2624 }
2625
2626 fn nested_table_scan(table_name: &str) -> Result<LogicalPlanBuilder> {
2627 let struct_field_in_list = Field::new_struct(
2630 "item",
2631 vec![
2632 Field::new("a", DataType::UInt32, false),
2633 Field::new("b", DataType::UInt32, false),
2634 ],
2635 false,
2636 );
2637 let string_field = Field::new_list_field(DataType::Utf8, false);
2638 let strings_field = Field::new_list("item", string_field.clone(), false);
2639 let schema = Schema::new(vec![
2640 Field::new("scalar", DataType::UInt32, false),
2641 Field::new_list("strings", string_field, false),
2642 Field::new_list("structs", struct_field_in_list, false),
2643 Field::new(
2644 "struct_singular",
2645 DataType::Struct(Fields::from(vec![
2646 Field::new("a", DataType::UInt32, false),
2647 Field::new("b", DataType::UInt32, false),
2648 ])),
2649 false,
2650 ),
2651 Field::new_list("stringss", strings_field, false),
2652 ]);
2653
2654 table_scan(Some(table_name), &schema, None)
2655 }
2656
2657 #[test]
2658 fn test_union_after_join() -> Result<()> {
2659 let values = vec![vec![lit(1)]];
2660
2661 let left = LogicalPlanBuilder::values(values.clone())?
2662 .alias("left")?
2663 .build()?;
2664 let right = LogicalPlanBuilder::values(values)?
2665 .alias("right")?
2666 .build()?;
2667
2668 let join = LogicalPlanBuilder::from(left).cross_join(right)?.build()?;
2669
2670 let plan = LogicalPlanBuilder::from(join.clone())
2671 .union(join)?
2672 .build()?;
2673
2674 assert_snapshot!(plan, @r"
2675 Union
2676 Cross Join:
2677 SubqueryAlias: left
2678 Values: (Int32(1))
2679 SubqueryAlias: right
2680 Values: (Int32(1))
2681 Cross Join:
2682 SubqueryAlias: left
2683 Values: (Int32(1))
2684 SubqueryAlias: right
2685 Values: (Int32(1))
2686 ");
2687
2688 Ok(())
2689 }
2690
2691 #[test]
2692 fn plan_builder_from_logical_plan() -> Result<()> {
2693 let plan =
2694 table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3, 4]))?
2695 .sort(vec![
2696 expr::Sort::new(col("state"), true, true),
2697 expr::Sort::new(col("salary"), false, false),
2698 ])?
2699 .build()?;
2700
2701 let plan_expected = format!("{plan}");
2702 let plan_builder: LogicalPlanBuilder = Arc::new(plan).into();
2703 assert_eq!(plan_expected, format!("{}", plan_builder.plan));
2704
2705 Ok(())
2706 }
2707
2708 #[test]
2709 fn plan_builder_aggregate_without_implicit_group_by_exprs() -> Result<()> {
2710 let constraints =
2711 Constraints::new_unverified(vec![Constraint::PrimaryKey(vec![0])]);
2712 let table_source = table_source_with_constraints(&employee_schema(), constraints);
2713
2714 let plan =
2715 LogicalPlanBuilder::scan("employee_csv", table_source, Some(vec![0, 3, 4]))?
2716 .aggregate(vec![col("id")], vec![sum(col("salary"))])?
2717 .build()?;
2718
2719 assert_snapshot!(plan, @r"
2720 Aggregate: groupBy=[[employee_csv.id]], aggr=[[sum(employee_csv.salary)]]
2721 TableScan: employee_csv projection=[id, state, salary]
2722 ");
2723
2724 Ok(())
2725 }
2726
2727 #[test]
2728 fn plan_builder_aggregate_with_implicit_group_by_exprs() -> Result<()> {
2729 let constraints =
2730 Constraints::new_unverified(vec![Constraint::PrimaryKey(vec![0])]);
2731 let table_source = table_source_with_constraints(&employee_schema(), constraints);
2732
2733 let options =
2734 LogicalPlanBuilderOptions::new().with_add_implicit_group_by_exprs(true);
2735 let plan =
2736 LogicalPlanBuilder::scan("employee_csv", table_source, Some(vec![0, 3, 4]))?
2737 .with_options(options)
2738 .aggregate(vec![col("id")], vec![sum(col("salary"))])?
2739 .build()?;
2740
2741 assert_snapshot!(plan, @r"
2742 Aggregate: groupBy=[[employee_csv.id, employee_csv.state, employee_csv.salary]], aggr=[[sum(employee_csv.salary)]]
2743 TableScan: employee_csv projection=[id, state, salary]
2744 ");
2745
2746 Ok(())
2747 }
2748
2749 #[test]
2750 fn test_join_metadata() -> Result<()> {
2751 let left_schema = DFSchema::new_with_metadata(
2752 vec![(None, Arc::new(Field::new("a", DataType::Int32, false)))],
2753 HashMap::from([("key".to_string(), "left".to_string())]),
2754 )?;
2755 let right_schema = DFSchema::new_with_metadata(
2756 vec![(None, Arc::new(Field::new("b", DataType::Int32, false)))],
2757 HashMap::from([("key".to_string(), "right".to_string())]),
2758 )?;
2759
2760 let join_schema =
2761 build_join_schema(&left_schema, &right_schema, &JoinType::Left)?;
2762 assert_eq!(
2763 join_schema.metadata(),
2764 &HashMap::from([("key".to_string(), "left".to_string())])
2765 );
2766 let join_schema =
2767 build_join_schema(&left_schema, &right_schema, &JoinType::Right)?;
2768 assert_eq!(
2769 join_schema.metadata(),
2770 &HashMap::from([("key".to_string(), "right".to_string())])
2771 );
2772
2773 Ok(())
2774 }
2775
2776 #[test]
2777 fn test_unique_field_aliases() {
2778 let t1_field_1 = Field::new("a", DataType::Int32, false);
2779 let t2_field_1 = Field::new("a", DataType::Int32, false);
2780 let t2_field_3 = Field::new("a", DataType::Int32, false);
2781 let t2_field_4 = Field::new("a:1", DataType::Int32, false);
2782 let t1_field_2 = Field::new("b", DataType::Int32, false);
2783 let t2_field_2 = Field::new("b", DataType::Int32, false);
2784
2785 let fields = vec![
2786 t1_field_1, t2_field_1, t1_field_2, t2_field_2, t2_field_3, t2_field_4,
2787 ];
2788 let fields = Fields::from(fields);
2789
2790 let remove_redundant = unique_field_aliases(&fields);
2791
2792 assert_eq!(
2799 remove_redundant,
2800 vec![
2801 None,
2802 Some("a:1".to_string()),
2803 None,
2804 Some("b:1".to_string()),
2805 Some("a:2".to_string()),
2806 Some("a:1:1".to_string()),
2807 ]
2808 );
2809 }
2810}