datafusion_expr/
utils.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! Expression utilities
19
20use std::cmp::Ordering;
21use std::collections::{BTreeSet, HashSet};
22use std::sync::Arc;
23
24use crate::expr::{Alias, Sort, WildcardOptions, WindowFunction, WindowFunctionParams};
25use crate::expr_rewriter::strip_outer_reference;
26use crate::{
27    and, BinaryExpr, Expr, ExprSchemable, Filter, GroupingSet, LogicalPlan, Operator,
28};
29use datafusion_expr_common::signature::{Signature, TypeSignature};
30
31use arrow::datatypes::{DataType, Field, Schema};
32use datafusion_common::tree_node::{
33    Transformed, TransformedResult, TreeNode, TreeNodeRecursion,
34};
35use datafusion_common::utils::get_at_indices;
36use datafusion_common::{
37    internal_err, plan_datafusion_err, plan_err, Column, DFSchema, DFSchemaRef, HashMap,
38    Result, TableReference,
39};
40
41use indexmap::IndexSet;
42use sqlparser::ast::{ExceptSelectItem, ExcludeSelectItem};
43
44pub use datafusion_functions_aggregate_common::order::AggregateOrderSensitivity;
45
46///  The value to which `COUNT(*)` is expanded to in
47///  `COUNT(<constant>)` expressions
48pub use datafusion_common::utils::expr::COUNT_STAR_EXPANSION;
49
50/// Count the number of distinct exprs in a list of group by expressions. If the
51/// first element is a `GroupingSet` expression then it must be the only expr.
52pub fn grouping_set_expr_count(group_expr: &[Expr]) -> Result<usize> {
53    if let Some(Expr::GroupingSet(grouping_set)) = group_expr.first() {
54        if group_expr.len() > 1 {
55            return plan_err!(
56                "Invalid group by expressions, GroupingSet must be the only expression"
57            );
58        }
59        // Groupings sets have an additional integral column for the grouping id
60        Ok(grouping_set.distinct_expr().len() + 1)
61    } else {
62        grouping_set_to_exprlist(group_expr).map(|exprs| exprs.len())
63    }
64}
65
66/// The [power set] (or powerset) of a set S is the set of all subsets of S, \
67/// including the empty set and S itself.
68///
69/// Example:
70///
71/// If S is the set {x, y, z}, then all the subsets of S are \
72///  {} \
73///  {x} \
74///  {y} \
75///  {z} \
76///  {x, y} \
77///  {x, z} \
78///  {y, z} \
79///  {x, y, z} \
80///  and hence the power set of S is {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
81///
82/// [power set]: https://en.wikipedia.org/wiki/Power_set
83fn powerset<T>(slice: &[T]) -> Result<Vec<Vec<&T>>, String> {
84    if slice.len() >= 64 {
85        return Err("The size of the set must be less than 64.".into());
86    }
87
88    let mut v = Vec::new();
89    for mask in 0..(1 << slice.len()) {
90        let mut ss = vec![];
91        let mut bitset = mask;
92        while bitset > 0 {
93            let rightmost: u64 = bitset & !(bitset - 1);
94            let idx = rightmost.trailing_zeros();
95            let item = slice.get(idx as usize).unwrap();
96            ss.push(item);
97            // zero the trailing bit
98            bitset &= bitset - 1;
99        }
100        v.push(ss);
101    }
102    Ok(v)
103}
104
105/// check the number of expressions contained in the grouping_set
106fn check_grouping_set_size_limit(size: usize) -> Result<()> {
107    let max_grouping_set_size = 65535;
108    if size > max_grouping_set_size {
109        return plan_err!("The number of group_expression in grouping_set exceeds the maximum limit {max_grouping_set_size}, found {size}");
110    }
111
112    Ok(())
113}
114
115/// check the number of grouping_set contained in the grouping sets
116fn check_grouping_sets_size_limit(size: usize) -> Result<()> {
117    let max_grouping_sets_size = 4096;
118    if size > max_grouping_sets_size {
119        return plan_err!("The number of grouping_set in grouping_sets exceeds the maximum limit {max_grouping_sets_size}, found {size}");
120    }
121
122    Ok(())
123}
124
125/// Merge two grouping_set
126///
127/// # Example
128/// ```text
129/// (A, B), (C, D) -> (A, B, C, D)
130/// ```
131///
132/// # Error
133/// - [`DataFusionError`]: The number of group_expression in grouping_set exceeds the maximum limit
134///
135/// [`DataFusionError`]: datafusion_common::DataFusionError
136fn merge_grouping_set<T: Clone>(left: &[T], right: &[T]) -> Result<Vec<T>> {
137    check_grouping_set_size_limit(left.len() + right.len())?;
138    Ok(left.iter().chain(right.iter()).cloned().collect())
139}
140
141/// Compute the cross product of two grouping_sets
142///
143/// # Example
144/// ```text
145/// [(A, B), (C, D)], [(E), (F)] -> [(A, B, E), (A, B, F), (C, D, E), (C, D, F)]
146/// ```
147///
148/// # Error
149/// - [`DataFusionError`]: The number of group_expression in grouping_set exceeds the maximum limit
150/// - [`DataFusionError`]: The number of grouping_set in grouping_sets exceeds the maximum limit
151///
152/// [`DataFusionError`]: datafusion_common::DataFusionError
153fn cross_join_grouping_sets<T: Clone>(
154    left: &[Vec<T>],
155    right: &[Vec<T>],
156) -> Result<Vec<Vec<T>>> {
157    let grouping_sets_size = left.len() * right.len();
158
159    check_grouping_sets_size_limit(grouping_sets_size)?;
160
161    let mut result = Vec::with_capacity(grouping_sets_size);
162    for le in left {
163        for re in right {
164            result.push(merge_grouping_set(le, re)?);
165        }
166    }
167    Ok(result)
168}
169
170/// Convert multiple grouping expressions into one [`GroupingSet::GroupingSets`],\
171/// if the grouping expression does not contain [`Expr::GroupingSet`] or only has one expression,\
172/// no conversion will be performed.
173///
174/// e.g.
175///
176/// person.id,\
177/// GROUPING SETS ((person.age, person.salary),(person.age)),\
178/// ROLLUP(person.state, person.birth_date)
179///
180/// =>
181///
182/// GROUPING SETS (\
183///   (person.id, person.age, person.salary),\
184///   (person.id, person.age, person.salary, person.state),\
185///   (person.id, person.age, person.salary, person.state, person.birth_date),\
186///   (person.id, person.age),\
187///   (person.id, person.age, person.state),\
188///   (person.id, person.age, person.state, person.birth_date)\
189/// )
190pub fn enumerate_grouping_sets(group_expr: Vec<Expr>) -> Result<Vec<Expr>> {
191    let has_grouping_set = group_expr
192        .iter()
193        .any(|expr| matches!(expr, Expr::GroupingSet(_)));
194    if !has_grouping_set || group_expr.len() == 1 {
195        return Ok(group_expr);
196    }
197    // Only process mix grouping sets
198    let partial_sets = group_expr
199        .iter()
200        .map(|expr| {
201            let exprs = match expr {
202                Expr::GroupingSet(GroupingSet::GroupingSets(grouping_sets)) => {
203                    check_grouping_sets_size_limit(grouping_sets.len())?;
204                    grouping_sets.iter().map(|e| e.iter().collect()).collect()
205                }
206                Expr::GroupingSet(GroupingSet::Cube(group_exprs)) => {
207                    let grouping_sets = powerset(group_exprs)
208                        .map_err(|e| plan_datafusion_err!("{}", e))?;
209                    check_grouping_sets_size_limit(grouping_sets.len())?;
210                    grouping_sets
211                }
212                Expr::GroupingSet(GroupingSet::Rollup(group_exprs)) => {
213                    let size = group_exprs.len();
214                    let slice = group_exprs.as_slice();
215                    check_grouping_sets_size_limit(size * (size + 1) / 2 + 1)?;
216                    (0..(size + 1))
217                        .map(|i| slice[0..i].iter().collect())
218                        .collect()
219                }
220                expr => vec![vec![expr]],
221            };
222            Ok(exprs)
223        })
224        .collect::<Result<Vec<_>>>()?;
225
226    // Cross Join
227    let grouping_sets = partial_sets
228        .into_iter()
229        .map(Ok)
230        .reduce(|l, r| cross_join_grouping_sets(&l?, &r?))
231        .transpose()?
232        .map(|e| {
233            e.into_iter()
234                .map(|e| e.into_iter().cloned().collect())
235                .collect()
236        })
237        .unwrap_or_default();
238
239    Ok(vec![Expr::GroupingSet(GroupingSet::GroupingSets(
240        grouping_sets,
241    ))])
242}
243
244/// Find all distinct exprs in a list of group by expressions. If the
245/// first element is a `GroupingSet` expression then it must be the only expr.
246pub fn grouping_set_to_exprlist(group_expr: &[Expr]) -> Result<Vec<&Expr>> {
247    if let Some(Expr::GroupingSet(grouping_set)) = group_expr.first() {
248        if group_expr.len() > 1 {
249            return plan_err!(
250                "Invalid group by expressions, GroupingSet must be the only expression"
251            );
252        }
253        Ok(grouping_set.distinct_expr())
254    } else {
255        Ok(group_expr
256            .iter()
257            .collect::<IndexSet<_>>()
258            .into_iter()
259            .collect())
260    }
261}
262
263/// Recursively walk an expression tree, collecting the unique set of columns
264/// referenced in the expression
265pub fn expr_to_columns(expr: &Expr, accum: &mut HashSet<Column>) -> Result<()> {
266    expr.apply(|expr| {
267        match expr {
268            Expr::Column(qc) => {
269                accum.insert(qc.clone());
270            }
271            // Use explicit pattern match instead of a default
272            // implementation, so that in the future if someone adds
273            // new Expr types, they will check here as well
274            // TODO: remove the next line after `Expr::Wildcard` is removed
275            #[expect(deprecated)]
276            Expr::Unnest(_)
277            | Expr::ScalarVariable(_, _)
278            | Expr::Alias(_)
279            | Expr::Literal(_)
280            | Expr::BinaryExpr { .. }
281            | Expr::Like { .. }
282            | Expr::SimilarTo { .. }
283            | Expr::Not(_)
284            | Expr::IsNotNull(_)
285            | Expr::IsNull(_)
286            | Expr::IsTrue(_)
287            | Expr::IsFalse(_)
288            | Expr::IsUnknown(_)
289            | Expr::IsNotTrue(_)
290            | Expr::IsNotFalse(_)
291            | Expr::IsNotUnknown(_)
292            | Expr::Negative(_)
293            | Expr::Between { .. }
294            | Expr::Case { .. }
295            | Expr::Cast { .. }
296            | Expr::TryCast { .. }
297            | Expr::ScalarFunction(..)
298            | Expr::WindowFunction { .. }
299            | Expr::AggregateFunction { .. }
300            | Expr::GroupingSet(_)
301            | Expr::InList { .. }
302            | Expr::Exists { .. }
303            | Expr::InSubquery(_)
304            | Expr::ScalarSubquery(_)
305            | Expr::Wildcard { .. }
306            | Expr::Placeholder(_)
307            | Expr::OuterReferenceColumn { .. } => {}
308        }
309        Ok(TreeNodeRecursion::Continue)
310    })
311    .map(|_| ())
312}
313
314/// Find excluded columns in the schema, if any
315/// SELECT * EXCLUDE(col1, col2), would return `vec![col1, col2]`
316fn get_excluded_columns(
317    opt_exclude: Option<&ExcludeSelectItem>,
318    opt_except: Option<&ExceptSelectItem>,
319    schema: &DFSchema,
320    qualifier: Option<&TableReference>,
321) -> Result<Vec<Column>> {
322    let mut idents = vec![];
323    if let Some(excepts) = opt_except {
324        idents.push(&excepts.first_element);
325        idents.extend(&excepts.additional_elements);
326    }
327    if let Some(exclude) = opt_exclude {
328        match exclude {
329            ExcludeSelectItem::Single(ident) => idents.push(ident),
330            ExcludeSelectItem::Multiple(idents_inner) => idents.extend(idents_inner),
331        }
332    }
333    // Excluded columns should be unique
334    let n_elem = idents.len();
335    let unique_idents = idents.into_iter().collect::<HashSet<_>>();
336    // If HashSet size, and vector length are different, this means that some of the excluded columns
337    // are not unique. In this case return error.
338    if n_elem != unique_idents.len() {
339        return plan_err!("EXCLUDE or EXCEPT contains duplicate column names");
340    }
341
342    let mut result = vec![];
343    for ident in unique_idents.into_iter() {
344        let col_name = ident.value.as_str();
345        let (qualifier, field) = schema.qualified_field_with_name(qualifier, col_name)?;
346        result.push(Column::from((qualifier, field)));
347    }
348    Ok(result)
349}
350
351/// Returns all `Expr`s in the schema, except the `Column`s in the `columns_to_skip`
352fn get_exprs_except_skipped(
353    schema: &DFSchema,
354    columns_to_skip: HashSet<Column>,
355) -> Vec<Expr> {
356    if columns_to_skip.is_empty() {
357        schema.iter().map(Expr::from).collect::<Vec<Expr>>()
358    } else {
359        schema
360            .columns()
361            .iter()
362            .filter_map(|c| {
363                if !columns_to_skip.contains(c) {
364                    Some(Expr::Column(c.clone()))
365                } else {
366                    None
367                }
368            })
369            .collect::<Vec<Expr>>()
370    }
371}
372
373/// For each column specified in the USING JOIN condition, the JOIN plan outputs it twice
374/// (once for each join side), but an unqualified wildcard should include it only once.
375/// This function returns the columns that should be excluded.
376fn exclude_using_columns(plan: &LogicalPlan) -> Result<HashSet<Column>> {
377    let using_columns = plan.using_columns()?;
378    let excluded = using_columns
379        .into_iter()
380        // For each USING JOIN condition, only expand to one of each join column in projection
381        .flat_map(|cols| {
382            let mut cols = cols.into_iter().collect::<Vec<_>>();
383            // sort join columns to make sure we consistently keep the same
384            // qualified column
385            cols.sort();
386            let mut out_column_names: HashSet<String> = HashSet::new();
387            cols.into_iter().filter_map(move |c| {
388                if out_column_names.contains(&c.name) {
389                    Some(c)
390                } else {
391                    out_column_names.insert(c.name);
392                    None
393                }
394            })
395        })
396        .collect::<HashSet<_>>();
397    Ok(excluded)
398}
399
400/// Resolves an `Expr::Wildcard` to a collection of `Expr::Column`'s.
401pub fn expand_wildcard(
402    schema: &DFSchema,
403    plan: &LogicalPlan,
404    wildcard_options: Option<&WildcardOptions>,
405) -> Result<Vec<Expr>> {
406    let mut columns_to_skip = exclude_using_columns(plan)?;
407    let excluded_columns = if let Some(WildcardOptions {
408        exclude: opt_exclude,
409        except: opt_except,
410        ..
411    }) = wildcard_options
412    {
413        get_excluded_columns(opt_exclude.as_ref(), opt_except.as_ref(), schema, None)?
414    } else {
415        vec![]
416    };
417    // Add each excluded `Column` to columns_to_skip
418    columns_to_skip.extend(excluded_columns);
419    Ok(get_exprs_except_skipped(schema, columns_to_skip))
420}
421
422/// Resolves an `Expr::Wildcard` to a collection of qualified `Expr::Column`'s.
423pub fn expand_qualified_wildcard(
424    qualifier: &TableReference,
425    schema: &DFSchema,
426    wildcard_options: Option<&WildcardOptions>,
427) -> Result<Vec<Expr>> {
428    let qualified_indices = schema.fields_indices_with_qualified(qualifier);
429    let projected_func_dependencies = schema
430        .functional_dependencies()
431        .project_functional_dependencies(&qualified_indices, qualified_indices.len());
432    let fields_with_qualified = get_at_indices(schema.fields(), &qualified_indices)?;
433    if fields_with_qualified.is_empty() {
434        return plan_err!("Invalid qualifier {qualifier}");
435    }
436
437    let qualified_schema = Arc::new(Schema::new_with_metadata(
438        fields_with_qualified,
439        schema.metadata().clone(),
440    ));
441    let qualified_dfschema =
442        DFSchema::try_from_qualified_schema(qualifier.clone(), &qualified_schema)?
443            .with_functional_dependencies(projected_func_dependencies)?;
444    let excluded_columns = if let Some(WildcardOptions {
445        exclude: opt_exclude,
446        except: opt_except,
447        ..
448    }) = wildcard_options
449    {
450        get_excluded_columns(
451            opt_exclude.as_ref(),
452            opt_except.as_ref(),
453            schema,
454            Some(qualifier),
455        )?
456    } else {
457        vec![]
458    };
459    // Add each excluded `Column` to columns_to_skip
460    let mut columns_to_skip = HashSet::new();
461    columns_to_skip.extend(excluded_columns);
462    Ok(get_exprs_except_skipped(
463        &qualified_dfschema,
464        columns_to_skip,
465    ))
466}
467
468/// (expr, "is the SortExpr for window (either comes from PARTITION BY or ORDER BY columns)")
469/// If bool is true SortExpr comes from `PARTITION BY` column, if false comes from `ORDER BY` column
470type WindowSortKey = Vec<(Sort, bool)>;
471
472/// Generate a sort key for a given window expr's partition_by and order_by expr
473pub fn generate_sort_key(
474    partition_by: &[Expr],
475    order_by: &[Sort],
476) -> Result<WindowSortKey> {
477    let normalized_order_by_keys = order_by
478        .iter()
479        .map(|e| {
480            let Sort { expr, .. } = e;
481            Sort::new(expr.clone(), true, false)
482        })
483        .collect::<Vec<_>>();
484
485    let mut final_sort_keys = vec![];
486    let mut is_partition_flag = vec![];
487    partition_by.iter().for_each(|e| {
488        // By default, create sort key with ASC is true and NULLS LAST to be consistent with
489        // PostgreSQL's rule: https://www.postgresql.org/docs/current/queries-order.html
490        let e = e.clone().sort(true, false);
491        if let Some(pos) = normalized_order_by_keys.iter().position(|key| key.eq(&e)) {
492            let order_by_key = &order_by[pos];
493            if !final_sort_keys.contains(order_by_key) {
494                final_sort_keys.push(order_by_key.clone());
495                is_partition_flag.push(true);
496            }
497        } else if !final_sort_keys.contains(&e) {
498            final_sort_keys.push(e);
499            is_partition_flag.push(true);
500        }
501    });
502
503    order_by.iter().for_each(|e| {
504        if !final_sort_keys.contains(e) {
505            final_sort_keys.push(e.clone());
506            is_partition_flag.push(false);
507        }
508    });
509    let res = final_sort_keys
510        .into_iter()
511        .zip(is_partition_flag)
512        .collect::<Vec<_>>();
513    Ok(res)
514}
515
516/// Compare the sort expr as PostgreSQL's common_prefix_cmp():
517/// <https://github.com/postgres/postgres/blob/master/src/backend/optimizer/plan/planner.c>
518pub fn compare_sort_expr(
519    sort_expr_a: &Sort,
520    sort_expr_b: &Sort,
521    schema: &DFSchemaRef,
522) -> Ordering {
523    let Sort {
524        expr: expr_a,
525        asc: asc_a,
526        nulls_first: nulls_first_a,
527    } = sort_expr_a;
528
529    let Sort {
530        expr: expr_b,
531        asc: asc_b,
532        nulls_first: nulls_first_b,
533    } = sort_expr_b;
534
535    let ref_indexes_a = find_column_indexes_referenced_by_expr(expr_a, schema);
536    let ref_indexes_b = find_column_indexes_referenced_by_expr(expr_b, schema);
537    for (idx_a, idx_b) in ref_indexes_a.iter().zip(ref_indexes_b.iter()) {
538        match idx_a.cmp(idx_b) {
539            Ordering::Less => {
540                return Ordering::Less;
541            }
542            Ordering::Greater => {
543                return Ordering::Greater;
544            }
545            Ordering::Equal => {}
546        }
547    }
548    match ref_indexes_a.len().cmp(&ref_indexes_b.len()) {
549        Ordering::Less => return Ordering::Greater,
550        Ordering::Greater => {
551            return Ordering::Less;
552        }
553        Ordering::Equal => {}
554    }
555    match (asc_a, asc_b) {
556        (true, false) => {
557            return Ordering::Greater;
558        }
559        (false, true) => {
560            return Ordering::Less;
561        }
562        _ => {}
563    }
564    match (nulls_first_a, nulls_first_b) {
565        (true, false) => {
566            return Ordering::Less;
567        }
568        (false, true) => {
569            return Ordering::Greater;
570        }
571        _ => {}
572    }
573    Ordering::Equal
574}
575
576/// Group a slice of window expression expr by their order by expressions
577pub fn group_window_expr_by_sort_keys(
578    window_expr: impl IntoIterator<Item = Expr>,
579) -> Result<Vec<(WindowSortKey, Vec<Expr>)>> {
580    let mut result = vec![];
581    window_expr.into_iter().try_for_each(|expr| match &expr {
582        Expr::WindowFunction( WindowFunction{ params: WindowFunctionParams { partition_by, order_by, ..}, .. }) => {
583            let sort_key = generate_sort_key(partition_by, order_by)?;
584            if let Some((_, values)) = result.iter_mut().find(
585                |group: &&mut (WindowSortKey, Vec<Expr>)| matches!(group, (key, _) if *key == sort_key),
586            ) {
587                values.push(expr);
588            } else {
589                result.push((sort_key, vec![expr]))
590            }
591            Ok(())
592        }
593        other => internal_err!(
594            "Impossibly got non-window expr {other:?}"
595        ),
596    })?;
597    Ok(result)
598}
599
600/// Collect all deeply nested `Expr::AggregateFunction`.
601/// They are returned in order of occurrence (depth
602/// first), with duplicates omitted.
603pub fn find_aggregate_exprs<'a>(exprs: impl IntoIterator<Item = &'a Expr>) -> Vec<Expr> {
604    find_exprs_in_exprs(exprs, &|nested_expr| {
605        matches!(nested_expr, Expr::AggregateFunction { .. })
606    })
607}
608
609/// Collect all deeply nested `Expr::WindowFunction`. They are returned in order of occurrence
610/// (depth first), with duplicates omitted.
611pub fn find_window_exprs(exprs: &[Expr]) -> Vec<Expr> {
612    find_exprs_in_exprs(exprs, &|nested_expr| {
613        matches!(nested_expr, Expr::WindowFunction { .. })
614    })
615}
616
617/// Collect all deeply nested `Expr::OuterReferenceColumn`. They are returned in order of occurrence
618/// (depth first), with duplicates omitted.
619pub fn find_out_reference_exprs(expr: &Expr) -> Vec<Expr> {
620    find_exprs_in_expr(expr, &|nested_expr| {
621        matches!(nested_expr, Expr::OuterReferenceColumn { .. })
622    })
623}
624
625/// Search the provided `Expr`'s, and all of their nested `Expr`, for any that
626/// pass the provided test. The returned `Expr`'s are deduplicated and returned
627/// in order of appearance (depth first).
628fn find_exprs_in_exprs<'a, F>(
629    exprs: impl IntoIterator<Item = &'a Expr>,
630    test_fn: &F,
631) -> Vec<Expr>
632where
633    F: Fn(&Expr) -> bool,
634{
635    exprs
636        .into_iter()
637        .flat_map(|expr| find_exprs_in_expr(expr, test_fn))
638        .fold(vec![], |mut acc, expr| {
639            if !acc.contains(&expr) {
640                acc.push(expr)
641            }
642            acc
643        })
644}
645
646/// Search an `Expr`, and all of its nested `Expr`'s, for any that pass the
647/// provided test. The returned `Expr`'s are deduplicated and returned in order
648/// of appearance (depth first).
649fn find_exprs_in_expr<F>(expr: &Expr, test_fn: &F) -> Vec<Expr>
650where
651    F: Fn(&Expr) -> bool,
652{
653    let mut exprs = vec![];
654    expr.apply(|expr| {
655        if test_fn(expr) {
656            if !(exprs.contains(expr)) {
657                exprs.push(expr.clone())
658            }
659            // Stop recursing down this expr once we find a match
660            return Ok(TreeNodeRecursion::Jump);
661        }
662
663        Ok(TreeNodeRecursion::Continue)
664    })
665    // pre_visit always returns OK, so this will always too
666    .expect("no way to return error during recursion");
667    exprs
668}
669
670/// Recursively inspect an [`Expr`] and all its children.
671pub fn inspect_expr_pre<F, E>(expr: &Expr, mut f: F) -> Result<(), E>
672where
673    F: FnMut(&Expr) -> Result<(), E>,
674{
675    let mut err = Ok(());
676    expr.apply(|expr| {
677        if let Err(e) = f(expr) {
678            // Save the error for later (it may not be a DataFusionError)
679            err = Err(e);
680            Ok(TreeNodeRecursion::Stop)
681        } else {
682            // keep going
683            Ok(TreeNodeRecursion::Continue)
684        }
685    })
686    // The closure always returns OK, so this will always too
687    .expect("no way to return error during recursion");
688
689    err
690}
691
692/// Create field meta-data from an expression, for use in a result set schema
693pub fn exprlist_to_fields<'a>(
694    exprs: impl IntoIterator<Item = &'a Expr>,
695    plan: &LogicalPlan,
696) -> Result<Vec<(Option<TableReference>, Arc<Field>)>> {
697    // Look for exact match in plan's output schema
698    let input_schema = plan.schema();
699    exprs
700        .into_iter()
701        .map(|e| e.to_field(input_schema))
702        .collect()
703}
704
705/// Convert an expression into Column expression if it's already provided as input plan.
706///
707/// For example, it rewrites:
708///
709/// ```text
710/// .aggregate(vec![col("c1")], vec![sum(col("c2"))])?
711/// .project(vec![col("c1"), sum(col("c2"))?
712/// ```
713///
714/// Into:
715///
716/// ```text
717/// .aggregate(vec![col("c1")], vec![sum(col("c2"))])?
718/// .project(vec![col("c1"), col("SUM(c2)")?
719/// ```
720pub fn columnize_expr(e: Expr, input: &LogicalPlan) -> Result<Expr> {
721    let output_exprs = match input.columnized_output_exprs() {
722        Ok(exprs) if !exprs.is_empty() => exprs,
723        _ => return Ok(e),
724    };
725    let exprs_map: HashMap<&Expr, Column> = output_exprs.into_iter().collect();
726    e.transform_down(|node: Expr| match exprs_map.get(&node) {
727        Some(column) => Ok(Transformed::new(
728            Expr::Column(column.clone()),
729            true,
730            TreeNodeRecursion::Jump,
731        )),
732        None => Ok(Transformed::no(node)),
733    })
734    .data()
735}
736
737/// Collect all deeply nested `Expr::Column`'s. They are returned in order of
738/// appearance (depth first), and may contain duplicates.
739pub fn find_column_exprs(exprs: &[Expr]) -> Vec<Expr> {
740    exprs
741        .iter()
742        .flat_map(find_columns_referenced_by_expr)
743        .map(Expr::Column)
744        .collect()
745}
746
747pub(crate) fn find_columns_referenced_by_expr(e: &Expr) -> Vec<Column> {
748    let mut exprs = vec![];
749    e.apply(|expr| {
750        if let Expr::Column(c) = expr {
751            exprs.push(c.clone())
752        }
753        Ok(TreeNodeRecursion::Continue)
754    })
755    // As the closure always returns Ok, this "can't" error
756    .expect("Unexpected error");
757    exprs
758}
759
760/// Convert any `Expr` to an `Expr::Column`.
761pub fn expr_as_column_expr(expr: &Expr, plan: &LogicalPlan) -> Result<Expr> {
762    match expr {
763        Expr::Column(col) => {
764            let (qualifier, field) = plan.schema().qualified_field_from_column(col)?;
765            Ok(Expr::from(Column::from((qualifier, field))))
766        }
767        _ => Ok(Expr::Column(Column::from_name(
768            expr.schema_name().to_string(),
769        ))),
770    }
771}
772
773/// Recursively walk an expression tree, collecting the column indexes
774/// referenced in the expression
775pub(crate) fn find_column_indexes_referenced_by_expr(
776    e: &Expr,
777    schema: &DFSchemaRef,
778) -> Vec<usize> {
779    let mut indexes = vec![];
780    e.apply(|expr| {
781        match expr {
782            Expr::Column(qc) => {
783                if let Ok(idx) = schema.index_of_column(qc) {
784                    indexes.push(idx);
785                }
786            }
787            Expr::Literal(_) => {
788                indexes.push(usize::MAX);
789            }
790            _ => {}
791        }
792        Ok(TreeNodeRecursion::Continue)
793    })
794    .unwrap();
795    indexes
796}
797
798/// Can this data type be used in hash join equal conditions??
799/// Data types here come from function 'equal_rows', if more data types are supported
800/// in create_hashes, add those data types here to generate join logical plan.
801pub fn can_hash(data_type: &DataType) -> bool {
802    match data_type {
803        DataType::Null => true,
804        DataType::Boolean => true,
805        DataType::Int8 => true,
806        DataType::Int16 => true,
807        DataType::Int32 => true,
808        DataType::Int64 => true,
809        DataType::UInt8 => true,
810        DataType::UInt16 => true,
811        DataType::UInt32 => true,
812        DataType::UInt64 => true,
813        DataType::Float16 => true,
814        DataType::Float32 => true,
815        DataType::Float64 => true,
816        DataType::Decimal128(_, _) => true,
817        DataType::Decimal256(_, _) => true,
818        DataType::Timestamp(_, _) => true,
819        DataType::Utf8 => true,
820        DataType::LargeUtf8 => true,
821        DataType::Utf8View => true,
822        DataType::Binary => true,
823        DataType::LargeBinary => true,
824        DataType::BinaryView => true,
825        DataType::Date32 => true,
826        DataType::Date64 => true,
827        DataType::Time32(_) => true,
828        DataType::Time64(_) => true,
829        DataType::Duration(_) => true,
830        DataType::Interval(_) => true,
831        DataType::FixedSizeBinary(_) => true,
832        DataType::Dictionary(key_type, value_type) => {
833            DataType::is_dictionary_key_type(key_type) && can_hash(value_type)
834        }
835        DataType::List(value_type) => can_hash(value_type.data_type()),
836        DataType::LargeList(value_type) => can_hash(value_type.data_type()),
837        DataType::FixedSizeList(value_type, _) => can_hash(value_type.data_type()),
838        DataType::Map(map_struct, true | false) => can_hash(map_struct.data_type()),
839        DataType::Struct(fields) => fields.iter().all(|f| can_hash(f.data_type())),
840
841        DataType::ListView(_)
842        | DataType::LargeListView(_)
843        | DataType::Union(_, _)
844        | DataType::RunEndEncoded(_, _) => false,
845    }
846}
847
848/// Check whether all columns are from the schema.
849pub fn check_all_columns_from_schema(
850    columns: &HashSet<&Column>,
851    schema: &DFSchema,
852) -> Result<bool> {
853    for col in columns.iter() {
854        let exist = schema.is_column_from_schema(col);
855        if !exist {
856            return Ok(false);
857        }
858    }
859
860    Ok(true)
861}
862
863/// Give two sides of the equijoin predicate, return a valid join key pair.
864/// If there is no valid join key pair, return None.
865///
866/// A valid join means:
867/// 1. All referenced column of the left side is from the left schema, and
868///    all referenced column of the right side is from the right schema.
869/// 2. Or opposite. All referenced column of the left side is from the right schema,
870///    and the right side is from the left schema.
871///
872pub fn find_valid_equijoin_key_pair(
873    left_key: &Expr,
874    right_key: &Expr,
875    left_schema: &DFSchema,
876    right_schema: &DFSchema,
877) -> Result<Option<(Expr, Expr)>> {
878    let left_using_columns = left_key.column_refs();
879    let right_using_columns = right_key.column_refs();
880
881    // Conditions like a = 10, will be added to non-equijoin.
882    if left_using_columns.is_empty() || right_using_columns.is_empty() {
883        return Ok(None);
884    }
885
886    if check_all_columns_from_schema(&left_using_columns, left_schema)?
887        && check_all_columns_from_schema(&right_using_columns, right_schema)?
888    {
889        return Ok(Some((left_key.clone(), right_key.clone())));
890    } else if check_all_columns_from_schema(&right_using_columns, left_schema)?
891        && check_all_columns_from_schema(&left_using_columns, right_schema)?
892    {
893        return Ok(Some((right_key.clone(), left_key.clone())));
894    }
895
896    Ok(None)
897}
898
899/// Creates a detailed error message for a function with wrong signature.
900///
901/// For example, a query like `select round(3.14, 1.1);` would yield:
902/// ```text
903/// Error during planning: No function matches 'round(Float64, Float64)'. You might need to add explicit type casts.
904///     Candidate functions:
905///     round(Float64, Int64)
906///     round(Float32, Int64)
907///     round(Float64)
908///     round(Float32)
909/// ```
910pub fn generate_signature_error_msg(
911    func_name: &str,
912    func_signature: Signature,
913    input_expr_types: &[DataType],
914) -> String {
915    let candidate_signatures = func_signature
916        .type_signature
917        .to_string_repr()
918        .iter()
919        .map(|args_str| format!("\t{func_name}({args_str})"))
920        .collect::<Vec<String>>()
921        .join("\n");
922
923    format!(
924            "No function matches the given name and argument types '{}({})'. You might need to add explicit type casts.\n\tCandidate functions:\n{}",
925            func_name, TypeSignature::join_types(input_expr_types, ", "), candidate_signatures
926        )
927}
928
929/// Splits a conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
930///
931/// See [`split_conjunction_owned`] for more details and an example.
932pub fn split_conjunction(expr: &Expr) -> Vec<&Expr> {
933    split_conjunction_impl(expr, vec![])
934}
935
936fn split_conjunction_impl<'a>(expr: &'a Expr, mut exprs: Vec<&'a Expr>) -> Vec<&'a Expr> {
937    match expr {
938        Expr::BinaryExpr(BinaryExpr {
939            right,
940            op: Operator::And,
941            left,
942        }) => {
943            let exprs = split_conjunction_impl(left, exprs);
944            split_conjunction_impl(right, exprs)
945        }
946        Expr::Alias(Alias { expr, .. }) => split_conjunction_impl(expr, exprs),
947        other => {
948            exprs.push(other);
949            exprs
950        }
951    }
952}
953
954/// Iterate parts in a conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
955///
956/// See [`split_conjunction_owned`] for more details and an example.
957pub fn iter_conjunction(expr: &Expr) -> impl Iterator<Item = &Expr> {
958    let mut stack = vec![expr];
959    std::iter::from_fn(move || {
960        while let Some(expr) = stack.pop() {
961            match expr {
962                Expr::BinaryExpr(BinaryExpr {
963                    right,
964                    op: Operator::And,
965                    left,
966                }) => {
967                    stack.push(right);
968                    stack.push(left);
969                }
970                Expr::Alias(Alias { expr, .. }) => stack.push(expr),
971                other => return Some(other),
972            }
973        }
974        None
975    })
976}
977
978/// Iterate parts in a conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
979///
980/// See [`split_conjunction_owned`] for more details and an example.
981pub fn iter_conjunction_owned(expr: Expr) -> impl Iterator<Item = Expr> {
982    let mut stack = vec![expr];
983    std::iter::from_fn(move || {
984        while let Some(expr) = stack.pop() {
985            match expr {
986                Expr::BinaryExpr(BinaryExpr {
987                    right,
988                    op: Operator::And,
989                    left,
990                }) => {
991                    stack.push(*right);
992                    stack.push(*left);
993                }
994                Expr::Alias(Alias { expr, .. }) => stack.push(*expr),
995                other => return Some(other),
996            }
997        }
998        None
999    })
1000}
1001
1002/// Splits an owned conjunctive [`Expr`] such as `A AND B AND C` => `[A, B, C]`
1003///
1004/// This is often used to "split" filter expressions such as `col1 = 5
1005/// AND col2 = 10` into [`col1 = 5`, `col2 = 10`];
1006///
1007/// # Example
1008/// ```
1009/// # use datafusion_expr::{col, lit};
1010/// # use datafusion_expr::utils::split_conjunction_owned;
1011/// // a=1 AND b=2
1012/// let expr = col("a").eq(lit(1)).and(col("b").eq(lit(2)));
1013///
1014/// // [a=1, b=2]
1015/// let split = vec![
1016///   col("a").eq(lit(1)),
1017///   col("b").eq(lit(2)),
1018/// ];
1019///
1020/// // use split_conjunction_owned to split them
1021/// assert_eq!(split_conjunction_owned(expr), split);
1022/// ```
1023pub fn split_conjunction_owned(expr: Expr) -> Vec<Expr> {
1024    split_binary_owned(expr, Operator::And)
1025}
1026
1027/// Splits an owned binary operator tree [`Expr`] such as `A <OP> B <OP> C` => `[A, B, C]`
1028///
1029/// This is often used to "split" expressions such as `col1 = 5
1030/// AND col2 = 10` into [`col1 = 5`, `col2 = 10`];
1031///
1032/// # Example
1033/// ```
1034/// # use datafusion_expr::{col, lit, Operator};
1035/// # use datafusion_expr::utils::split_binary_owned;
1036/// # use std::ops::Add;
1037/// // a=1 + b=2
1038/// let expr = col("a").eq(lit(1)).add(col("b").eq(lit(2)));
1039///
1040/// // [a=1, b=2]
1041/// let split = vec![
1042///   col("a").eq(lit(1)),
1043///   col("b").eq(lit(2)),
1044/// ];
1045///
1046/// // use split_binary_owned to split them
1047/// assert_eq!(split_binary_owned(expr, Operator::Plus), split);
1048/// ```
1049pub fn split_binary_owned(expr: Expr, op: Operator) -> Vec<Expr> {
1050    split_binary_owned_impl(expr, op, vec![])
1051}
1052
1053fn split_binary_owned_impl(
1054    expr: Expr,
1055    operator: Operator,
1056    mut exprs: Vec<Expr>,
1057) -> Vec<Expr> {
1058    match expr {
1059        Expr::BinaryExpr(BinaryExpr { right, op, left }) if op == operator => {
1060            let exprs = split_binary_owned_impl(*left, operator, exprs);
1061            split_binary_owned_impl(*right, operator, exprs)
1062        }
1063        Expr::Alias(Alias { expr, .. }) => {
1064            split_binary_owned_impl(*expr, operator, exprs)
1065        }
1066        other => {
1067            exprs.push(other);
1068            exprs
1069        }
1070    }
1071}
1072
1073/// Splits an binary operator tree [`Expr`] such as `A <OP> B <OP> C` => `[A, B, C]`
1074///
1075/// See [`split_binary_owned`] for more details and an example.
1076pub fn split_binary(expr: &Expr, op: Operator) -> Vec<&Expr> {
1077    split_binary_impl(expr, op, vec![])
1078}
1079
1080fn split_binary_impl<'a>(
1081    expr: &'a Expr,
1082    operator: Operator,
1083    mut exprs: Vec<&'a Expr>,
1084) -> Vec<&'a Expr> {
1085    match expr {
1086        Expr::BinaryExpr(BinaryExpr { right, op, left }) if *op == operator => {
1087            let exprs = split_binary_impl(left, operator, exprs);
1088            split_binary_impl(right, operator, exprs)
1089        }
1090        Expr::Alias(Alias { expr, .. }) => split_binary_impl(expr, operator, exprs),
1091        other => {
1092            exprs.push(other);
1093            exprs
1094        }
1095    }
1096}
1097
1098/// Combines an array of filter expressions into a single filter
1099/// expression consisting of the input filter expressions joined with
1100/// logical AND.
1101///
1102/// Returns None if the filters array is empty.
1103///
1104/// # Example
1105/// ```
1106/// # use datafusion_expr::{col, lit};
1107/// # use datafusion_expr::utils::conjunction;
1108/// // a=1 AND b=2
1109/// let expr = col("a").eq(lit(1)).and(col("b").eq(lit(2)));
1110///
1111/// // [a=1, b=2]
1112/// let split = vec![
1113///   col("a").eq(lit(1)),
1114///   col("b").eq(lit(2)),
1115/// ];
1116///
1117/// // use conjunction to join them together with `AND`
1118/// assert_eq!(conjunction(split), Some(expr));
1119/// ```
1120pub fn conjunction(filters: impl IntoIterator<Item = Expr>) -> Option<Expr> {
1121    filters.into_iter().reduce(Expr::and)
1122}
1123
1124/// Combines an array of filter expressions into a single filter
1125/// expression consisting of the input filter expressions joined with
1126/// logical OR.
1127///
1128/// Returns None if the filters array is empty.
1129///
1130/// # Example
1131/// ```
1132/// # use datafusion_expr::{col, lit};
1133/// # use datafusion_expr::utils::disjunction;
1134/// // a=1 OR b=2
1135/// let expr = col("a").eq(lit(1)).or(col("b").eq(lit(2)));
1136///
1137/// // [a=1, b=2]
1138/// let split = vec![
1139///   col("a").eq(lit(1)),
1140///   col("b").eq(lit(2)),
1141/// ];
1142///
1143/// // use disjunction to join them together with `OR`
1144/// assert_eq!(disjunction(split), Some(expr));
1145/// ```
1146pub fn disjunction(filters: impl IntoIterator<Item = Expr>) -> Option<Expr> {
1147    filters.into_iter().reduce(Expr::or)
1148}
1149
1150/// Returns a new [LogicalPlan] that filters the output of  `plan` with a
1151/// [LogicalPlan::Filter] with all `predicates` ANDed.
1152///
1153/// # Example
1154/// Before:
1155/// ```text
1156/// plan
1157/// ```
1158///
1159/// After:
1160/// ```text
1161/// Filter(predicate)
1162///   plan
1163/// ```
1164pub fn add_filter(plan: LogicalPlan, predicates: &[&Expr]) -> Result<LogicalPlan> {
1165    // reduce filters to a single filter with an AND
1166    let predicate = predicates
1167        .iter()
1168        .skip(1)
1169        .fold(predicates[0].clone(), |acc, predicate| {
1170            and(acc, (*predicate).to_owned())
1171        });
1172
1173    Ok(LogicalPlan::Filter(Filter::try_new(
1174        predicate,
1175        Arc::new(plan),
1176    )?))
1177}
1178
1179/// Looks for correlating expressions: for example, a binary expression with one field from the subquery, and
1180/// one not in the subquery (closed upon from outer scope)
1181///
1182/// # Arguments
1183///
1184/// * `exprs` - List of expressions that may or may not be joins
1185///
1186/// # Return value
1187///
1188/// Tuple of (expressions containing joins, remaining non-join expressions)
1189pub fn find_join_exprs(exprs: Vec<&Expr>) -> Result<(Vec<Expr>, Vec<Expr>)> {
1190    let mut joins = vec![];
1191    let mut others = vec![];
1192    for filter in exprs.into_iter() {
1193        // If the expression contains correlated predicates, add it to join filters
1194        if filter.contains_outer() {
1195            if !matches!(filter, Expr::BinaryExpr(BinaryExpr{ left, op: Operator::Eq, right }) if left.eq(right))
1196            {
1197                joins.push(strip_outer_reference((*filter).clone()));
1198            }
1199        } else {
1200            others.push((*filter).clone());
1201        }
1202    }
1203
1204    Ok((joins, others))
1205}
1206
1207/// Returns the first (and only) element in a slice, or an error
1208///
1209/// # Arguments
1210///
1211/// * `slice` - The slice to extract from
1212///
1213/// # Return value
1214///
1215/// The first element, or an error
1216pub fn only_or_err<T>(slice: &[T]) -> Result<&T> {
1217    match slice {
1218        [it] => Ok(it),
1219        [] => plan_err!("No items found!"),
1220        _ => plan_err!("More than one item found!"),
1221    }
1222}
1223
1224/// merge inputs schema into a single schema.
1225pub fn merge_schema(inputs: &[&LogicalPlan]) -> DFSchema {
1226    if inputs.len() == 1 {
1227        inputs[0].schema().as_ref().clone()
1228    } else {
1229        inputs.iter().map(|input| input.schema()).fold(
1230            DFSchema::empty(),
1231            |mut lhs, rhs| {
1232                lhs.merge(rhs);
1233                lhs
1234            },
1235        )
1236    }
1237}
1238
1239/// Build state name. State is the intermediate state of the aggregate function.
1240pub fn format_state_name(name: &str, state_name: &str) -> String {
1241    format!("{name}[{state_name}]")
1242}
1243
1244/// Determine the set of [`Column`]s produced by the subquery.
1245pub fn collect_subquery_cols(
1246    exprs: &[Expr],
1247    subquery_schema: &DFSchema,
1248) -> Result<BTreeSet<Column>> {
1249    exprs.iter().try_fold(BTreeSet::new(), |mut cols, expr| {
1250        let mut using_cols: Vec<Column> = vec![];
1251        for col in expr.column_refs().into_iter() {
1252            if subquery_schema.has_column(col) {
1253                using_cols.push(col.clone());
1254            }
1255        }
1256
1257        cols.extend(using_cols);
1258        Result::<_>::Ok(cols)
1259    })
1260}
1261
1262#[cfg(test)]
1263mod tests {
1264    use super::*;
1265    use crate::{
1266        col, cube, expr_vec_fmt, grouping_set, lit, rollup,
1267        test::function_stub::max_udaf, test::function_stub::min_udaf,
1268        test::function_stub::sum_udaf, Cast, ExprFunctionExt, WindowFunctionDefinition,
1269    };
1270    use arrow::datatypes::{UnionFields, UnionMode};
1271
1272    #[test]
1273    fn test_group_window_expr_by_sort_keys_empty_case() -> Result<()> {
1274        let result = group_window_expr_by_sort_keys(vec![])?;
1275        let expected: Vec<(WindowSortKey, Vec<Expr>)> = vec![];
1276        assert_eq!(expected, result);
1277        Ok(())
1278    }
1279
1280    #[test]
1281    fn test_group_window_expr_by_sort_keys_empty_window() -> Result<()> {
1282        let max1 = Expr::WindowFunction(WindowFunction::new(
1283            WindowFunctionDefinition::AggregateUDF(max_udaf()),
1284            vec![col("name")],
1285        ));
1286        let max2 = Expr::WindowFunction(WindowFunction::new(
1287            WindowFunctionDefinition::AggregateUDF(max_udaf()),
1288            vec![col("name")],
1289        ));
1290        let min3 = Expr::WindowFunction(WindowFunction::new(
1291            WindowFunctionDefinition::AggregateUDF(min_udaf()),
1292            vec![col("name")],
1293        ));
1294        let sum4 = Expr::WindowFunction(WindowFunction::new(
1295            WindowFunctionDefinition::AggregateUDF(sum_udaf()),
1296            vec![col("age")],
1297        ));
1298        let exprs = &[max1.clone(), max2.clone(), min3.clone(), sum4.clone()];
1299        let result = group_window_expr_by_sort_keys(exprs.to_vec())?;
1300        let key = vec![];
1301        let expected: Vec<(WindowSortKey, Vec<Expr>)> =
1302            vec![(key, vec![max1, max2, min3, sum4])];
1303        assert_eq!(expected, result);
1304        Ok(())
1305    }
1306
1307    #[test]
1308    fn test_group_window_expr_by_sort_keys() -> Result<()> {
1309        let age_asc = Sort::new(col("age"), true, true);
1310        let name_desc = Sort::new(col("name"), false, true);
1311        let created_at_desc = Sort::new(col("created_at"), false, true);
1312        let max1 = Expr::WindowFunction(WindowFunction::new(
1313            WindowFunctionDefinition::AggregateUDF(max_udaf()),
1314            vec![col("name")],
1315        ))
1316        .order_by(vec![age_asc.clone(), name_desc.clone()])
1317        .build()
1318        .unwrap();
1319        let max2 = Expr::WindowFunction(WindowFunction::new(
1320            WindowFunctionDefinition::AggregateUDF(max_udaf()),
1321            vec![col("name")],
1322        ));
1323        let min3 = Expr::WindowFunction(WindowFunction::new(
1324            WindowFunctionDefinition::AggregateUDF(min_udaf()),
1325            vec![col("name")],
1326        ))
1327        .order_by(vec![age_asc.clone(), name_desc.clone()])
1328        .build()
1329        .unwrap();
1330        let sum4 = Expr::WindowFunction(WindowFunction::new(
1331            WindowFunctionDefinition::AggregateUDF(sum_udaf()),
1332            vec![col("age")],
1333        ))
1334        .order_by(vec![
1335            name_desc.clone(),
1336            age_asc.clone(),
1337            created_at_desc.clone(),
1338        ])
1339        .build()
1340        .unwrap();
1341        // FIXME use as_ref
1342        let exprs = &[max1.clone(), max2.clone(), min3.clone(), sum4.clone()];
1343        let result = group_window_expr_by_sort_keys(exprs.to_vec())?;
1344
1345        let key1 = vec![(age_asc.clone(), false), (name_desc.clone(), false)];
1346        let key2 = vec![];
1347        let key3 = vec![
1348            (name_desc, false),
1349            (age_asc, false),
1350            (created_at_desc, false),
1351        ];
1352
1353        let expected: Vec<(WindowSortKey, Vec<Expr>)> = vec![
1354            (key1, vec![max1, min3]),
1355            (key2, vec![max2]),
1356            (key3, vec![sum4]),
1357        ];
1358        assert_eq!(expected, result);
1359        Ok(())
1360    }
1361
1362    #[test]
1363    fn avoid_generate_duplicate_sort_keys() -> Result<()> {
1364        let asc_or_desc = [true, false];
1365        let nulls_first_or_last = [true, false];
1366        let partition_by = &[col("age"), col("name"), col("created_at")];
1367        for asc_ in asc_or_desc {
1368            for nulls_first_ in nulls_first_or_last {
1369                let order_by = &[
1370                    Sort {
1371                        expr: col("age"),
1372                        asc: asc_,
1373                        nulls_first: nulls_first_,
1374                    },
1375                    Sort {
1376                        expr: col("name"),
1377                        asc: asc_,
1378                        nulls_first: nulls_first_,
1379                    },
1380                ];
1381
1382                let expected = vec![
1383                    (
1384                        Sort {
1385                            expr: col("age"),
1386                            asc: asc_,
1387                            nulls_first: nulls_first_,
1388                        },
1389                        true,
1390                    ),
1391                    (
1392                        Sort {
1393                            expr: col("name"),
1394                            asc: asc_,
1395                            nulls_first: nulls_first_,
1396                        },
1397                        true,
1398                    ),
1399                    (
1400                        Sort {
1401                            expr: col("created_at"),
1402                            asc: true,
1403                            nulls_first: false,
1404                        },
1405                        true,
1406                    ),
1407                ];
1408                let result = generate_sort_key(partition_by, order_by)?;
1409                assert_eq!(expected, result);
1410            }
1411        }
1412        Ok(())
1413    }
1414
1415    #[test]
1416    fn test_enumerate_grouping_sets() -> Result<()> {
1417        let multi_cols = vec![col("col1"), col("col2"), col("col3")];
1418        let simple_col = col("simple_col");
1419        let cube = cube(multi_cols.clone());
1420        let rollup = rollup(multi_cols.clone());
1421        let grouping_set = grouping_set(vec![multi_cols]);
1422
1423        // 1. col
1424        let sets = enumerate_grouping_sets(vec![simple_col.clone()])?;
1425        let result = format!("[{}]", expr_vec_fmt!(sets));
1426        assert_eq!("[simple_col]", &result);
1427
1428        // 2. cube
1429        let sets = enumerate_grouping_sets(vec![cube.clone()])?;
1430        let result = format!("[{}]", expr_vec_fmt!(sets));
1431        assert_eq!("[CUBE (col1, col2, col3)]", &result);
1432
1433        // 3. rollup
1434        let sets = enumerate_grouping_sets(vec![rollup.clone()])?;
1435        let result = format!("[{}]", expr_vec_fmt!(sets));
1436        assert_eq!("[ROLLUP (col1, col2, col3)]", &result);
1437
1438        // 4. col + cube
1439        let sets = enumerate_grouping_sets(vec![simple_col.clone(), cube.clone()])?;
1440        let result = format!("[{}]", expr_vec_fmt!(sets));
1441        assert_eq!(
1442            "[GROUPING SETS (\
1443            (simple_col), \
1444            (simple_col, col1), \
1445            (simple_col, col2), \
1446            (simple_col, col1, col2), \
1447            (simple_col, col3), \
1448            (simple_col, col1, col3), \
1449            (simple_col, col2, col3), \
1450            (simple_col, col1, col2, col3))]",
1451            &result
1452        );
1453
1454        // 5. col + rollup
1455        let sets = enumerate_grouping_sets(vec![simple_col.clone(), rollup.clone()])?;
1456        let result = format!("[{}]", expr_vec_fmt!(sets));
1457        assert_eq!(
1458            "[GROUPING SETS (\
1459            (simple_col), \
1460            (simple_col, col1), \
1461            (simple_col, col1, col2), \
1462            (simple_col, col1, col2, col3))]",
1463            &result
1464        );
1465
1466        // 6. col + grouping_set
1467        let sets =
1468            enumerate_grouping_sets(vec![simple_col.clone(), grouping_set.clone()])?;
1469        let result = format!("[{}]", expr_vec_fmt!(sets));
1470        assert_eq!(
1471            "[GROUPING SETS (\
1472            (simple_col, col1, col2, col3))]",
1473            &result
1474        );
1475
1476        // 7. col + grouping_set + rollup
1477        let sets = enumerate_grouping_sets(vec![
1478            simple_col.clone(),
1479            grouping_set,
1480            rollup.clone(),
1481        ])?;
1482        let result = format!("[{}]", expr_vec_fmt!(sets));
1483        assert_eq!(
1484            "[GROUPING SETS (\
1485            (simple_col, col1, col2, col3), \
1486            (simple_col, col1, col2, col3, col1), \
1487            (simple_col, col1, col2, col3, col1, col2), \
1488            (simple_col, col1, col2, col3, col1, col2, col3))]",
1489            &result
1490        );
1491
1492        // 8. col + cube + rollup
1493        let sets = enumerate_grouping_sets(vec![simple_col, cube, rollup])?;
1494        let result = format!("[{}]", expr_vec_fmt!(sets));
1495        assert_eq!(
1496            "[GROUPING SETS (\
1497            (simple_col), \
1498            (simple_col, col1), \
1499            (simple_col, col1, col2), \
1500            (simple_col, col1, col2, col3), \
1501            (simple_col, col1), \
1502            (simple_col, col1, col1), \
1503            (simple_col, col1, col1, col2), \
1504            (simple_col, col1, col1, col2, col3), \
1505            (simple_col, col2), \
1506            (simple_col, col2, col1), \
1507            (simple_col, col2, col1, col2), \
1508            (simple_col, col2, col1, col2, col3), \
1509            (simple_col, col1, col2), \
1510            (simple_col, col1, col2, col1), \
1511            (simple_col, col1, col2, col1, col2), \
1512            (simple_col, col1, col2, col1, col2, col3), \
1513            (simple_col, col3), \
1514            (simple_col, col3, col1), \
1515            (simple_col, col3, col1, col2), \
1516            (simple_col, col3, col1, col2, col3), \
1517            (simple_col, col1, col3), \
1518            (simple_col, col1, col3, col1), \
1519            (simple_col, col1, col3, col1, col2), \
1520            (simple_col, col1, col3, col1, col2, col3), \
1521            (simple_col, col2, col3), \
1522            (simple_col, col2, col3, col1), \
1523            (simple_col, col2, col3, col1, col2), \
1524            (simple_col, col2, col3, col1, col2, col3), \
1525            (simple_col, col1, col2, col3), \
1526            (simple_col, col1, col2, col3, col1), \
1527            (simple_col, col1, col2, col3, col1, col2), \
1528            (simple_col, col1, col2, col3, col1, col2, col3))]",
1529            &result
1530        );
1531
1532        Ok(())
1533    }
1534    #[test]
1535    fn test_split_conjunction() {
1536        let expr = col("a");
1537        let result = split_conjunction(&expr);
1538        assert_eq!(result, vec![&expr]);
1539    }
1540
1541    #[test]
1542    fn test_split_conjunction_two() {
1543        let expr = col("a").eq(lit(5)).and(col("b"));
1544        let expr1 = col("a").eq(lit(5));
1545        let expr2 = col("b");
1546
1547        let result = split_conjunction(&expr);
1548        assert_eq!(result, vec![&expr1, &expr2]);
1549    }
1550
1551    #[test]
1552    fn test_split_conjunction_alias() {
1553        let expr = col("a").eq(lit(5)).and(col("b").alias("the_alias"));
1554        let expr1 = col("a").eq(lit(5));
1555        let expr2 = col("b"); // has no alias
1556
1557        let result = split_conjunction(&expr);
1558        assert_eq!(result, vec![&expr1, &expr2]);
1559    }
1560
1561    #[test]
1562    fn test_split_conjunction_or() {
1563        let expr = col("a").eq(lit(5)).or(col("b"));
1564        let result = split_conjunction(&expr);
1565        assert_eq!(result, vec![&expr]);
1566    }
1567
1568    #[test]
1569    fn test_split_binary_owned() {
1570        let expr = col("a");
1571        assert_eq!(split_binary_owned(expr.clone(), Operator::And), vec![expr]);
1572    }
1573
1574    #[test]
1575    fn test_split_binary_owned_two() {
1576        assert_eq!(
1577            split_binary_owned(col("a").eq(lit(5)).and(col("b")), Operator::And),
1578            vec![col("a").eq(lit(5)), col("b")]
1579        );
1580    }
1581
1582    #[test]
1583    fn test_split_binary_owned_different_op() {
1584        let expr = col("a").eq(lit(5)).or(col("b"));
1585        assert_eq!(
1586            // expr is connected by OR, but pass in AND
1587            split_binary_owned(expr.clone(), Operator::And),
1588            vec![expr]
1589        );
1590    }
1591
1592    #[test]
1593    fn test_split_conjunction_owned() {
1594        let expr = col("a");
1595        assert_eq!(split_conjunction_owned(expr.clone()), vec![expr]);
1596    }
1597
1598    #[test]
1599    fn test_split_conjunction_owned_two() {
1600        assert_eq!(
1601            split_conjunction_owned(col("a").eq(lit(5)).and(col("b"))),
1602            vec![col("a").eq(lit(5)), col("b")]
1603        );
1604    }
1605
1606    #[test]
1607    fn test_split_conjunction_owned_alias() {
1608        assert_eq!(
1609            split_conjunction_owned(col("a").eq(lit(5)).and(col("b").alias("the_alias"))),
1610            vec![
1611                col("a").eq(lit(5)),
1612                // no alias on b
1613                col("b"),
1614            ]
1615        );
1616    }
1617
1618    #[test]
1619    fn test_conjunction_empty() {
1620        assert_eq!(conjunction(vec![]), None);
1621    }
1622
1623    #[test]
1624    fn test_conjunction() {
1625        // `[A, B, C]`
1626        let expr = conjunction(vec![col("a"), col("b"), col("c")]);
1627
1628        // --> `(A AND B) AND C`
1629        assert_eq!(expr, Some(col("a").and(col("b")).and(col("c"))));
1630
1631        // which is different than `A AND (B AND C)`
1632        assert_ne!(expr, Some(col("a").and(col("b").and(col("c")))));
1633    }
1634
1635    #[test]
1636    fn test_disjunction_empty() {
1637        assert_eq!(disjunction(vec![]), None);
1638    }
1639
1640    #[test]
1641    fn test_disjunction() {
1642        // `[A, B, C]`
1643        let expr = disjunction(vec![col("a"), col("b"), col("c")]);
1644
1645        // --> `(A OR B) OR C`
1646        assert_eq!(expr, Some(col("a").or(col("b")).or(col("c"))));
1647
1648        // which is different than `A OR (B OR C)`
1649        assert_ne!(expr, Some(col("a").or(col("b").or(col("c")))));
1650    }
1651
1652    #[test]
1653    fn test_split_conjunction_owned_or() {
1654        let expr = col("a").eq(lit(5)).or(col("b"));
1655        assert_eq!(split_conjunction_owned(expr.clone()), vec![expr]);
1656    }
1657
1658    #[test]
1659    fn test_collect_expr() -> Result<()> {
1660        let mut accum: HashSet<Column> = HashSet::new();
1661        expr_to_columns(
1662            &Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64)),
1663            &mut accum,
1664        )?;
1665        expr_to_columns(
1666            &Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64)),
1667            &mut accum,
1668        )?;
1669        assert_eq!(1, accum.len());
1670        assert!(accum.contains(&Column::from_name("a")));
1671        Ok(())
1672    }
1673
1674    #[test]
1675    fn test_can_hash() {
1676        let union_fields: UnionFields = [
1677            (0, Arc::new(Field::new("A", DataType::Int32, true))),
1678            (1, Arc::new(Field::new("B", DataType::Float64, true))),
1679        ]
1680        .into_iter()
1681        .collect();
1682
1683        let union_type = DataType::Union(union_fields, UnionMode::Sparse);
1684        assert!(!can_hash(&union_type));
1685
1686        let list_union_type =
1687            DataType::List(Arc::new(Field::new("my_union", union_type, true)));
1688        assert!(!can_hash(&list_union_type));
1689    }
1690}