datafusion_expr/
udf.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! [`ScalarUDF`]: Scalar User Defined Functions
19
20use crate::expr::schema_name_from_exprs_comma_separated_without_space;
21use crate::simplify::{ExprSimplifyResult, SimplifyInfo};
22use crate::sort_properties::{ExprProperties, SortProperties};
23use crate::{ColumnarValue, Documentation, Expr, Signature};
24use arrow::datatypes::DataType;
25use datafusion_common::{not_impl_err, ExprSchema, Result, ScalarValue};
26use datafusion_expr_common::interval_arithmetic::Interval;
27use std::any::Any;
28use std::cmp::Ordering;
29use std::fmt::Debug;
30use std::hash::{DefaultHasher, Hash, Hasher};
31use std::sync::Arc;
32
33/// Logical representation of a Scalar User Defined Function.
34///
35/// A scalar function produces a single row output for each row of input. This
36/// struct contains the information DataFusion needs to plan and invoke
37/// functions you supply such name, type signature, return type, and actual
38/// implementation.
39///
40/// 1. For simple use cases, use [`create_udf`] (examples in [`simple_udf.rs`]).
41///
42/// 2. For advanced use cases, use [`ScalarUDFImpl`] which provides full API
43///    access (examples in  [`advanced_udf.rs`]).
44///
45/// See [`Self::call`] to invoke a `ScalarUDF` with arguments.
46///
47/// # API Note
48///
49/// This is a separate struct from `ScalarUDFImpl` to maintain backwards
50/// compatibility with the older API.
51///
52/// [`create_udf`]: crate::expr_fn::create_udf
53/// [`simple_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udf.rs
54/// [`advanced_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udf.rs
55#[derive(Debug, Clone)]
56pub struct ScalarUDF {
57    inner: Arc<dyn ScalarUDFImpl>,
58}
59
60impl PartialEq for ScalarUDF {
61    fn eq(&self, other: &Self) -> bool {
62        self.inner.equals(other.inner.as_ref())
63    }
64}
65
66// Manual implementation based on `ScalarUDFImpl::equals`
67impl PartialOrd for ScalarUDF {
68    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
69        match self.name().partial_cmp(other.name()) {
70            Some(Ordering::Equal) => self.signature().partial_cmp(other.signature()),
71            cmp => cmp,
72        }
73    }
74}
75
76impl Eq for ScalarUDF {}
77
78impl Hash for ScalarUDF {
79    fn hash<H: Hasher>(&self, state: &mut H) {
80        self.inner.hash_value().hash(state)
81    }
82}
83
84impl ScalarUDF {
85    /// Create a new `ScalarUDF` from a `[ScalarUDFImpl]` trait object
86    ///
87    /// Note this is the same as using the `From` impl (`ScalarUDF::from`)
88    pub fn new_from_impl<F>(fun: F) -> ScalarUDF
89    where
90        F: ScalarUDFImpl + 'static,
91    {
92        Self::new_from_shared_impl(Arc::new(fun))
93    }
94
95    /// Create a new `ScalarUDF` from a `[ScalarUDFImpl]` trait object
96    pub fn new_from_shared_impl(fun: Arc<dyn ScalarUDFImpl>) -> ScalarUDF {
97        Self { inner: fun }
98    }
99
100    /// Return the underlying [`ScalarUDFImpl`] trait object for this function
101    pub fn inner(&self) -> &Arc<dyn ScalarUDFImpl> {
102        &self.inner
103    }
104
105    /// Adds additional names that can be used to invoke this function, in
106    /// addition to `name`
107    ///
108    /// If you implement [`ScalarUDFImpl`] directly you should return aliases directly.
109    pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
110        Self::new_from_impl(AliasedScalarUDFImpl::new(Arc::clone(&self.inner), aliases))
111    }
112
113    /// Returns a [`Expr`] logical expression to call this UDF with specified
114    /// arguments.
115    ///
116    /// This utility allows easily calling UDFs
117    ///
118    /// # Example
119    /// ```no_run
120    /// use datafusion_expr::{col, lit, ScalarUDF};
121    /// # fn my_udf() -> ScalarUDF { unimplemented!() }
122    /// let my_func: ScalarUDF = my_udf();
123    /// // Create an expr for `my_func(a, 12.3)`
124    /// let expr = my_func.call(vec![col("a"), lit(12.3)]);
125    /// ```
126    pub fn call(&self, args: Vec<Expr>) -> Expr {
127        Expr::ScalarFunction(crate::expr::ScalarFunction::new_udf(
128            Arc::new(self.clone()),
129            args,
130        ))
131    }
132
133    /// Returns this function's name.
134    ///
135    /// See [`ScalarUDFImpl::name`] for more details.
136    pub fn name(&self) -> &str {
137        self.inner.name()
138    }
139
140    /// Returns this function's display_name.
141    ///
142    /// See [`ScalarUDFImpl::display_name`] for more details
143    pub fn display_name(&self, args: &[Expr]) -> Result<String> {
144        self.inner.display_name(args)
145    }
146
147    /// Returns this function's schema_name.
148    ///
149    /// See [`ScalarUDFImpl::schema_name`] for more details
150    pub fn schema_name(&self, args: &[Expr]) -> Result<String> {
151        self.inner.schema_name(args)
152    }
153
154    /// Returns the aliases for this function.
155    ///
156    /// See [`ScalarUDF::with_aliases`] for more details
157    pub fn aliases(&self) -> &[String] {
158        self.inner.aliases()
159    }
160
161    /// Returns this function's [`Signature`] (what input types are accepted).
162    ///
163    /// See [`ScalarUDFImpl::signature`] for more details.
164    pub fn signature(&self) -> &Signature {
165        self.inner.signature()
166    }
167
168    /// The datatype this function returns given the input argument types.
169    /// This function is used when the input arguments are [`DataType`]s.
170    ///
171    ///  # Notes
172    ///
173    /// If a function implement [`ScalarUDFImpl::return_type_from_args`],
174    /// its [`ScalarUDFImpl::return_type`] should raise an error.
175    ///
176    /// See [`ScalarUDFImpl::return_type`] for more details.
177    pub fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
178        self.inner.return_type(arg_types)
179    }
180
181    /// Return the datatype this function returns given the input argument types.
182    ///
183    /// See [`ScalarUDFImpl::return_type_from_args`] for more details.
184    pub fn return_type_from_args(&self, args: ReturnTypeArgs) -> Result<ReturnInfo> {
185        self.inner.return_type_from_args(args)
186    }
187
188    /// Do the function rewrite
189    ///
190    /// See [`ScalarUDFImpl::simplify`] for more details.
191    pub fn simplify(
192        &self,
193        args: Vec<Expr>,
194        info: &dyn SimplifyInfo,
195    ) -> Result<ExprSimplifyResult> {
196        self.inner.simplify(args, info)
197    }
198
199    #[allow(deprecated)]
200    pub fn is_nullable(&self, args: &[Expr], schema: &dyn ExprSchema) -> bool {
201        self.inner.is_nullable(args, schema)
202    }
203
204    /// Invoke the function on `args`, returning the appropriate result.
205    ///
206    /// See [`ScalarUDFImpl::invoke_with_args`] for details.
207    pub fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
208        self.inner.invoke_with_args(args)
209    }
210
211    /// Get the circuits of inner implementation
212    pub fn short_circuits(&self) -> bool {
213        self.inner.short_circuits()
214    }
215
216    /// Computes the output interval for a [`ScalarUDF`], given the input
217    /// intervals.
218    ///
219    /// # Parameters
220    ///
221    /// * `inputs` are the intervals for the inputs (children) of this function.
222    ///
223    /// # Example
224    ///
225    /// If the function is `ABS(a)`, and the input interval is `a: [-3, 2]`,
226    /// then the output interval would be `[0, 3]`.
227    pub fn evaluate_bounds(&self, inputs: &[&Interval]) -> Result<Interval> {
228        self.inner.evaluate_bounds(inputs)
229    }
230
231    /// Updates bounds for child expressions, given a known interval for this
232    /// function. This is used to propagate constraints down through an expression
233    /// tree.
234    ///
235    /// # Parameters
236    ///
237    /// * `interval` is the currently known interval for this function.
238    /// * `inputs` are the current intervals for the inputs (children) of this function.
239    ///
240    /// # Returns
241    ///
242    /// A `Vec` of new intervals for the children, in order.
243    ///
244    /// If constraint propagation reveals an infeasibility for any child, returns
245    /// [`None`]. If none of the children intervals change as a result of
246    /// propagation, may return an empty vector instead of cloning `children`.
247    /// This is the default (and conservative) return value.
248    ///
249    /// # Example
250    ///
251    /// If the function is `ABS(a)`, the current `interval` is `[4, 5]` and the
252    /// input `a` is given as `[-7, 3]`, then propagation would return `[-5, 3]`.
253    pub fn propagate_constraints(
254        &self,
255        interval: &Interval,
256        inputs: &[&Interval],
257    ) -> Result<Option<Vec<Interval>>> {
258        self.inner.propagate_constraints(interval, inputs)
259    }
260
261    /// Calculates the [`SortProperties`] of this function based on its
262    /// children's properties.
263    pub fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
264        self.inner.output_ordering(inputs)
265    }
266
267    pub fn preserves_lex_ordering(&self, inputs: &[ExprProperties]) -> Result<bool> {
268        self.inner.preserves_lex_ordering(inputs)
269    }
270
271    /// See [`ScalarUDFImpl::coerce_types`] for more details.
272    pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
273        self.inner.coerce_types(arg_types)
274    }
275
276    /// Returns the documentation for this Scalar UDF.
277    ///
278    /// Documentation can be accessed programmatically as well as
279    /// generating publicly facing documentation.
280    pub fn documentation(&self) -> Option<&Documentation> {
281        self.inner.documentation()
282    }
283}
284
285impl<F> From<F> for ScalarUDF
286where
287    F: ScalarUDFImpl + 'static,
288{
289    fn from(fun: F) -> Self {
290        Self::new_from_impl(fun)
291    }
292}
293
294/// Arguments passed to [`ScalarUDFImpl::invoke_with_args`] when invoking a
295/// scalar function.
296pub struct ScalarFunctionArgs<'a> {
297    /// The evaluated arguments to the function
298    pub args: Vec<ColumnarValue>,
299    /// The number of rows in record batch being evaluated
300    pub number_rows: usize,
301    /// The return type of the scalar function returned (from `return_type` or `return_type_from_args`)
302    /// when creating the physical expression from the logical expression
303    pub return_type: &'a DataType,
304}
305
306/// Information about arguments passed to the function
307///
308/// This structure contains metadata about how the function was called
309/// such as the type of the arguments, any scalar arguments and if the
310/// arguments can (ever) be null
311///
312/// See [`ScalarUDFImpl::return_type_from_args`] for more information
313#[derive(Debug)]
314pub struct ReturnTypeArgs<'a> {
315    /// The data types of the arguments to the function
316    pub arg_types: &'a [DataType],
317    /// Is argument `i` to the function a scalar (constant)
318    ///
319    /// If argument `i` is not a scalar, it will be None
320    ///
321    /// For example, if a function is called like `my_function(column_a, 5)`
322    /// this field will be `[None, Some(ScalarValue::Int32(Some(5)))]`
323    pub scalar_arguments: &'a [Option<&'a ScalarValue>],
324    /// Can argument `i` (ever) null?
325    pub nullables: &'a [bool],
326}
327
328/// Return metadata for this function.
329///
330/// See [`ScalarUDFImpl::return_type_from_args`] for more information
331#[derive(Debug)]
332pub struct ReturnInfo {
333    return_type: DataType,
334    nullable: bool,
335}
336
337impl ReturnInfo {
338    pub fn new(return_type: DataType, nullable: bool) -> Self {
339        Self {
340            return_type,
341            nullable,
342        }
343    }
344
345    pub fn new_nullable(return_type: DataType) -> Self {
346        Self {
347            return_type,
348            nullable: true,
349        }
350    }
351
352    pub fn new_non_nullable(return_type: DataType) -> Self {
353        Self {
354            return_type,
355            nullable: false,
356        }
357    }
358
359    pub fn return_type(&self) -> &DataType {
360        &self.return_type
361    }
362
363    pub fn nullable(&self) -> bool {
364        self.nullable
365    }
366
367    pub fn into_parts(self) -> (DataType, bool) {
368        (self.return_type, self.nullable)
369    }
370}
371
372/// Trait for implementing user defined scalar functions.
373///
374/// This trait exposes the full API for implementing user defined functions and
375/// can be used to implement any function.
376///
377/// See [`advanced_udf.rs`] for a full example with complete implementation and
378/// [`ScalarUDF`] for other available options.
379///
380/// [`advanced_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udf.rs
381///
382/// # Basic Example
383/// ```
384/// # use std::any::Any;
385/// # use std::sync::LazyLock;
386/// # use arrow::datatypes::DataType;
387/// # use datafusion_common::{DataFusionError, plan_err, Result};
388/// # use datafusion_expr::{col, ColumnarValue, Documentation, ScalarFunctionArgs, Signature, Volatility};
389/// # use datafusion_expr::{ScalarUDFImpl, ScalarUDF};
390/// # use datafusion_expr::scalar_doc_sections::DOC_SECTION_MATH;
391/// /// This struct for a simple UDF that adds one to an int32
392/// #[derive(Debug)]
393/// struct AddOne {
394///   signature: Signature,
395/// }
396///
397/// impl AddOne {
398///   fn new() -> Self {
399///     Self {
400///       signature: Signature::uniform(1, vec![DataType::Int32], Volatility::Immutable),
401///      }
402///   }
403/// }
404///
405/// static DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
406///         Documentation::builder(DOC_SECTION_MATH, "Add one to an int32", "add_one(2)")
407///             .with_argument("arg1", "The int32 number to add one to")
408///             .build()
409///     });
410///
411/// fn get_doc() -> &'static Documentation {
412///     &DOCUMENTATION
413/// }
414///
415/// /// Implement the ScalarUDFImpl trait for AddOne
416/// impl ScalarUDFImpl for AddOne {
417///    fn as_any(&self) -> &dyn Any { self }
418///    fn name(&self) -> &str { "add_one" }
419///    fn signature(&self) -> &Signature { &self.signature }
420///    fn return_type(&self, args: &[DataType]) -> Result<DataType> {
421///      if !matches!(args.get(0), Some(&DataType::Int32)) {
422///        return plan_err!("add_one only accepts Int32 arguments");
423///      }
424///      Ok(DataType::Int32)
425///    }
426///    // The actual implementation would add one to the argument
427///    fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
428///         unimplemented!()
429///    }
430///    fn documentation(&self) -> Option<&Documentation> {
431///         Some(get_doc())
432///     }
433/// }
434///
435/// // Create a new ScalarUDF from the implementation
436/// let add_one = ScalarUDF::from(AddOne::new());
437///
438/// // Call the function `add_one(col)`
439/// let expr = add_one.call(vec![col("a")]);
440/// ```
441pub trait ScalarUDFImpl: Debug + Send + Sync {
442    // Note: When adding any methods (with default implementations), remember to add them also
443    // into the AliasedScalarUDFImpl below!
444
445    /// Returns this object as an [`Any`] trait object
446    fn as_any(&self) -> &dyn Any;
447
448    /// Returns this function's name
449    fn name(&self) -> &str;
450
451    /// Returns the user-defined display name of function, given the arguments
452    ///
453    /// This can be used to customize the output column name generated by this
454    /// function.
455    ///
456    /// Defaults to `name(args[0], args[1], ...)`
457    fn display_name(&self, args: &[Expr]) -> Result<String> {
458        let names: Vec<String> = args.iter().map(ToString::to_string).collect();
459        // TODO: join with ", " to standardize the formatting of Vec<Expr>, <https://github.com/apache/datafusion/issues/10364>
460        Ok(format!("{}({})", self.name(), names.join(",")))
461    }
462
463    /// Returns the name of the column this expression would create
464    ///
465    /// See [`Expr::schema_name`] for details
466    fn schema_name(&self, args: &[Expr]) -> Result<String> {
467        Ok(format!(
468            "{}({})",
469            self.name(),
470            schema_name_from_exprs_comma_separated_without_space(args)?
471        ))
472    }
473
474    /// Returns the function's [`Signature`] for information about what input
475    /// types are accepted and the function's Volatility.
476    fn signature(&self) -> &Signature;
477
478    /// What [`DataType`] will be returned by this function, given the types of
479    /// the arguments.
480    ///
481    /// # Notes
482    ///
483    /// If you provide an implementation for [`Self::return_type_from_args`],
484    /// DataFusion will not call `return_type` (this function). In such cases
485    /// is recommended to return [`DataFusionError::Internal`].
486    ///
487    /// [`DataFusionError::Internal`]: datafusion_common::DataFusionError::Internal
488    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
489
490    /// What type will be returned by this function, given the arguments?
491    ///
492    /// By default, this function calls [`Self::return_type`] with the
493    /// types of each argument.
494    ///
495    /// # Notes
496    ///
497    /// Most UDFs should implement [`Self::return_type`] and not this
498    /// function as the output type for most functions only depends on the types
499    /// of their inputs (e.g. `sqrt(f32)` is always `f32`).
500    ///
501    /// This function can be used for more advanced cases such as:
502    ///
503    /// 1. specifying nullability
504    /// 2. return types based on the **values** of the arguments (rather than
505    ///    their **types**.
506    ///
507    /// # Output Type based on Values
508    ///
509    /// For example, the following two function calls get the same argument
510    /// types (something and a `Utf8` string) but return different types based
511    /// on the value of the second argument:
512    ///
513    /// * `arrow_cast(x, 'Int16')` --> `Int16`
514    /// * `arrow_cast(x, 'Float32')` --> `Float32`
515    ///
516    /// # Requirements
517    ///
518    /// This function **must** consistently return the same type for the same
519    /// logical input even if the input is simplified (e.g. it must return the same
520    /// value for `('foo' | 'bar')` as it does for ('foobar').
521    fn return_type_from_args(&self, args: ReturnTypeArgs) -> Result<ReturnInfo> {
522        let return_type = self.return_type(args.arg_types)?;
523        Ok(ReturnInfo::new_nullable(return_type))
524    }
525
526    #[deprecated(
527        since = "45.0.0",
528        note = "Use `return_type_from_args` instead. if you use `is_nullable` that returns non-nullable with `return_type`, you would need to switch to `return_type_from_args`, you might have error"
529    )]
530    fn is_nullable(&self, _args: &[Expr], _schema: &dyn ExprSchema) -> bool {
531        true
532    }
533
534    /// Invoke the function returning the appropriate result.
535    ///
536    /// # Performance
537    ///
538    /// For the best performance, the implementations should handle the common case
539    /// when one or more of their arguments are constant values (aka
540    /// [`ColumnarValue::Scalar`]).
541    ///
542    /// [`ColumnarValue::values_to_arrays`] can be used to convert the arguments
543    /// to arrays, which will likely be simpler code, but be slower.
544    fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue>;
545
546    /// Returns any aliases (alternate names) for this function.
547    ///
548    /// Aliases can be used to invoke the same function using different names.
549    /// For example in some databases `now()` and `current_timestamp()` are
550    /// aliases for the same function. This behavior can be obtained by
551    /// returning `current_timestamp` as an alias for the `now` function.
552    ///
553    /// Note: `aliases` should only include names other than [`Self::name`].
554    /// Defaults to `[]` (no aliases)
555    fn aliases(&self) -> &[String] {
556        &[]
557    }
558
559    /// Optionally apply per-UDF simplification / rewrite rules.
560    ///
561    /// This can be used to apply function specific simplification rules during
562    /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
563    /// implementation does nothing.
564    ///
565    /// Note that DataFusion handles simplifying arguments and  "constant
566    /// folding" (replacing a function call with constant arguments such as
567    /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
568    /// optimizations manually for specific UDFs.
569    ///
570    /// # Arguments
571    /// * `args`: The arguments of the function
572    /// * `info`: The necessary information for simplification
573    ///
574    /// # Returns
575    /// [`ExprSimplifyResult`] indicating the result of the simplification NOTE
576    /// if the function cannot be simplified, the arguments *MUST* be returned
577    /// unmodified
578    fn simplify(
579        &self,
580        args: Vec<Expr>,
581        _info: &dyn SimplifyInfo,
582    ) -> Result<ExprSimplifyResult> {
583        Ok(ExprSimplifyResult::Original(args))
584    }
585
586    /// Returns true if some of this `exprs` subexpressions may not be evaluated
587    /// and thus any side effects (like divide by zero) may not be encountered
588    /// Setting this to true prevents certain optimizations such as common subexpression elimination
589    fn short_circuits(&self) -> bool {
590        false
591    }
592
593    /// Computes the output interval for a [`ScalarUDFImpl`], given the input
594    /// intervals.
595    ///
596    /// # Parameters
597    ///
598    /// * `children` are the intervals for the children (inputs) of this function.
599    ///
600    /// # Example
601    ///
602    /// If the function is `ABS(a)`, and the input interval is `a: [-3, 2]`,
603    /// then the output interval would be `[0, 3]`.
604    fn evaluate_bounds(&self, _input: &[&Interval]) -> Result<Interval> {
605        // We cannot assume the input datatype is the same of output type.
606        Interval::make_unbounded(&DataType::Null)
607    }
608
609    /// Updates bounds for child expressions, given a known interval for this
610    /// function. This is used to propagate constraints down through an expression
611    /// tree.
612    ///
613    /// # Parameters
614    ///
615    /// * `interval` is the currently known interval for this function.
616    /// * `inputs` are the current intervals for the inputs (children) of this function.
617    ///
618    /// # Returns
619    ///
620    /// A `Vec` of new intervals for the children, in order.
621    ///
622    /// If constraint propagation reveals an infeasibility for any child, returns
623    /// [`None`]. If none of the children intervals change as a result of
624    /// propagation, may return an empty vector instead of cloning `children`.
625    /// This is the default (and conservative) return value.
626    ///
627    /// # Example
628    ///
629    /// If the function is `ABS(a)`, the current `interval` is `[4, 5]` and the
630    /// input `a` is given as `[-7, 3]`, then propagation would return `[-5, 3]`.
631    fn propagate_constraints(
632        &self,
633        _interval: &Interval,
634        _inputs: &[&Interval],
635    ) -> Result<Option<Vec<Interval>>> {
636        Ok(Some(vec![]))
637    }
638
639    /// Calculates the [`SortProperties`] of this function based on its children's properties.
640    fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
641        if !self.preserves_lex_ordering(inputs)? {
642            return Ok(SortProperties::Unordered);
643        }
644
645        let Some(first_order) = inputs.first().map(|p| &p.sort_properties) else {
646            return Ok(SortProperties::Singleton);
647        };
648
649        if inputs
650            .iter()
651            .skip(1)
652            .all(|input| &input.sort_properties == first_order)
653        {
654            Ok(*first_order)
655        } else {
656            Ok(SortProperties::Unordered)
657        }
658    }
659
660    /// Whether the function preserves lexicographical ordering based on the input ordering
661    fn preserves_lex_ordering(&self, _inputs: &[ExprProperties]) -> Result<bool> {
662        Ok(false)
663    }
664
665    /// Coerce arguments of a function call to types that the function can evaluate.
666    ///
667    /// This function is only called if [`ScalarUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
668    /// UDFs should return one of the other variants of `TypeSignature` which handle common
669    /// cases
670    ///
671    /// See the [type coercion module](crate::type_coercion)
672    /// documentation for more details on type coercion
673    ///
674    /// For example, if your function requires a floating point arguments, but the user calls
675    /// it like `my_func(1::int)` (i.e. with `1` as an integer), coerce_types can return `[DataType::Float64]`
676    /// to ensure the argument is converted to `1::double`
677    ///
678    /// # Parameters
679    /// * `arg_types`: The argument types of the arguments  this function with
680    ///
681    /// # Return value
682    /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
683    /// arguments to these specific types.
684    fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
685        not_impl_err!("Function {} does not implement coerce_types", self.name())
686    }
687
688    /// Return true if this scalar UDF is equal to the other.
689    ///
690    /// Allows customizing the equality of scalar UDFs.
691    /// Must be consistent with [`Self::hash_value`] and follow the same rules as [`Eq`]:
692    ///
693    /// - reflexive: `a.equals(a)`;
694    /// - symmetric: `a.equals(b)` implies `b.equals(a)`;
695    /// - transitive: `a.equals(b)` and `b.equals(c)` implies `a.equals(c)`.
696    ///
697    /// By default, compares [`Self::name`] and [`Self::signature`].
698    fn equals(&self, other: &dyn ScalarUDFImpl) -> bool {
699        self.name() == other.name() && self.signature() == other.signature()
700    }
701
702    /// Returns a hash value for this scalar UDF.
703    ///
704    /// Allows customizing the hash code of scalar UDFs. Similarly to [`Hash`] and [`Eq`],
705    /// if [`Self::equals`] returns true for two UDFs, their `hash_value`s must be the same.
706    ///
707    /// By default, hashes [`Self::name`] and [`Self::signature`].
708    fn hash_value(&self) -> u64 {
709        let hasher = &mut DefaultHasher::new();
710        self.name().hash(hasher);
711        self.signature().hash(hasher);
712        hasher.finish()
713    }
714
715    /// Returns the documentation for this Scalar UDF.
716    ///
717    /// Documentation can be accessed programmatically as well as
718    /// generating publicly facing documentation.
719    fn documentation(&self) -> Option<&Documentation> {
720        None
721    }
722}
723
724/// ScalarUDF that adds an alias to the underlying function. It is better to
725/// implement [`ScalarUDFImpl`], which supports aliases, directly if possible.
726#[derive(Debug)]
727struct AliasedScalarUDFImpl {
728    inner: Arc<dyn ScalarUDFImpl>,
729    aliases: Vec<String>,
730}
731
732impl AliasedScalarUDFImpl {
733    pub fn new(
734        inner: Arc<dyn ScalarUDFImpl>,
735        new_aliases: impl IntoIterator<Item = &'static str>,
736    ) -> Self {
737        let mut aliases = inner.aliases().to_vec();
738        aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
739        Self { inner, aliases }
740    }
741}
742
743impl ScalarUDFImpl for AliasedScalarUDFImpl {
744    fn as_any(&self) -> &dyn Any {
745        self
746    }
747
748    fn name(&self) -> &str {
749        self.inner.name()
750    }
751
752    fn display_name(&self, args: &[Expr]) -> Result<String> {
753        self.inner.display_name(args)
754    }
755
756    fn schema_name(&self, args: &[Expr]) -> Result<String> {
757        self.inner.schema_name(args)
758    }
759
760    fn signature(&self) -> &Signature {
761        self.inner.signature()
762    }
763
764    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
765        self.inner.return_type(arg_types)
766    }
767
768    fn aliases(&self) -> &[String] {
769        &self.aliases
770    }
771
772    fn return_type_from_args(&self, args: ReturnTypeArgs) -> Result<ReturnInfo> {
773        self.inner.return_type_from_args(args)
774    }
775
776    fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
777        self.inner.invoke_with_args(args)
778    }
779
780    fn simplify(
781        &self,
782        args: Vec<Expr>,
783        info: &dyn SimplifyInfo,
784    ) -> Result<ExprSimplifyResult> {
785        self.inner.simplify(args, info)
786    }
787
788    fn short_circuits(&self) -> bool {
789        self.inner.short_circuits()
790    }
791
792    fn evaluate_bounds(&self, input: &[&Interval]) -> Result<Interval> {
793        self.inner.evaluate_bounds(input)
794    }
795
796    fn propagate_constraints(
797        &self,
798        interval: &Interval,
799        inputs: &[&Interval],
800    ) -> Result<Option<Vec<Interval>>> {
801        self.inner.propagate_constraints(interval, inputs)
802    }
803
804    fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
805        self.inner.output_ordering(inputs)
806    }
807
808    fn preserves_lex_ordering(&self, inputs: &[ExprProperties]) -> Result<bool> {
809        self.inner.preserves_lex_ordering(inputs)
810    }
811
812    fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
813        self.inner.coerce_types(arg_types)
814    }
815
816    fn equals(&self, other: &dyn ScalarUDFImpl) -> bool {
817        if let Some(other) = other.as_any().downcast_ref::<AliasedScalarUDFImpl>() {
818            self.inner.equals(other.inner.as_ref()) && self.aliases == other.aliases
819        } else {
820            false
821        }
822    }
823
824    fn hash_value(&self) -> u64 {
825        let hasher = &mut DefaultHasher::new();
826        self.inner.hash_value().hash(hasher);
827        self.aliases.hash(hasher);
828        hasher.finish()
829    }
830
831    fn documentation(&self) -> Option<&Documentation> {
832        self.inner.documentation()
833    }
834}
835
836// Scalar UDF doc sections for use in public documentation
837pub mod scalar_doc_sections {
838    use crate::DocSection;
839
840    pub fn doc_sections() -> Vec<DocSection> {
841        vec![
842            DOC_SECTION_MATH,
843            DOC_SECTION_CONDITIONAL,
844            DOC_SECTION_STRING,
845            DOC_SECTION_BINARY_STRING,
846            DOC_SECTION_REGEX,
847            DOC_SECTION_DATETIME,
848            DOC_SECTION_ARRAY,
849            DOC_SECTION_STRUCT,
850            DOC_SECTION_MAP,
851            DOC_SECTION_HASHING,
852            DOC_SECTION_UNION,
853            DOC_SECTION_OTHER,
854        ]
855    }
856
857    pub const fn doc_sections_const() -> &'static [DocSection] {
858        &[
859            DOC_SECTION_MATH,
860            DOC_SECTION_CONDITIONAL,
861            DOC_SECTION_STRING,
862            DOC_SECTION_BINARY_STRING,
863            DOC_SECTION_REGEX,
864            DOC_SECTION_DATETIME,
865            DOC_SECTION_ARRAY,
866            DOC_SECTION_STRUCT,
867            DOC_SECTION_MAP,
868            DOC_SECTION_HASHING,
869            DOC_SECTION_UNION,
870            DOC_SECTION_OTHER,
871        ]
872    }
873
874    pub const DOC_SECTION_MATH: DocSection = DocSection {
875        include: true,
876        label: "Math Functions",
877        description: None,
878    };
879
880    pub const DOC_SECTION_CONDITIONAL: DocSection = DocSection {
881        include: true,
882        label: "Conditional Functions",
883        description: None,
884    };
885
886    pub const DOC_SECTION_STRING: DocSection = DocSection {
887        include: true,
888        label: "String Functions",
889        description: None,
890    };
891
892    pub const DOC_SECTION_BINARY_STRING: DocSection = DocSection {
893        include: true,
894        label: "Binary String Functions",
895        description: None,
896    };
897
898    pub const DOC_SECTION_REGEX: DocSection = DocSection {
899        include: true,
900        label: "Regular Expression Functions",
901        description: Some(
902            r#"Apache DataFusion uses a [PCRE-like](https://en.wikibooks.org/wiki/Regular_Expressions/Perl-Compatible_Regular_Expressions)
903regular expression [syntax](https://docs.rs/regex/latest/regex/#syntax)
904(minus support for several features including look-around and backreferences).
905The following regular expression functions are supported:"#,
906        ),
907    };
908
909    pub const DOC_SECTION_DATETIME: DocSection = DocSection {
910        include: true,
911        label: "Time and Date Functions",
912        description: None,
913    };
914
915    pub const DOC_SECTION_ARRAY: DocSection = DocSection {
916        include: true,
917        label: "Array Functions",
918        description: None,
919    };
920
921    pub const DOC_SECTION_STRUCT: DocSection = DocSection {
922        include: true,
923        label: "Struct Functions",
924        description: None,
925    };
926
927    pub const DOC_SECTION_MAP: DocSection = DocSection {
928        include: true,
929        label: "Map Functions",
930        description: None,
931    };
932
933    pub const DOC_SECTION_HASHING: DocSection = DocSection {
934        include: true,
935        label: "Hashing Functions",
936        description: None,
937    };
938
939    pub const DOC_SECTION_OTHER: DocSection = DocSection {
940        include: true,
941        label: "Other Functions",
942        description: None,
943    };
944
945    pub const DOC_SECTION_UNION: DocSection = DocSection {
946        include: true,
947        label: "Union Functions",
948        description: Some("Functions to work with the union data type, also know as tagged unions, variant types, enums or sum types. Note: Not related to the SQL UNION operator"),
949    };
950}