1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Aggregate function module contains all built-in aggregate functions definitions
use std::sync::Arc;
use std::{fmt, str::FromStr};
use crate::utils;
use crate::{type_coercion::aggregates::*, Signature, TypeSignature, Volatility};
use arrow::datatypes::{DataType, Field};
use datafusion_common::{plan_datafusion_err, plan_err, DataFusionError, Result};
use strum_macros::EnumIter;
/// Enum of all built-in aggregate functions
// Contributor's guide for adding new aggregate functions
// https://datafusion.apache.org/contributor-guide/index.html#how-to-add-a-new-aggregate-function
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Hash, EnumIter)]
pub enum AggregateFunction {
/// Count
Count,
/// Sum
Sum,
/// Minimum
Min,
/// Maximum
Max,
/// Average
Avg,
/// Approximate distinct function
ApproxDistinct,
/// Aggregation into an array
ArrayAgg,
/// N'th value in a group according to some ordering
NthValue,
/// Variance (Population)
VariancePop,
/// Standard Deviation (Sample)
Stddev,
/// Standard Deviation (Population)
StddevPop,
/// Correlation
Correlation,
/// Slope from linear regression
RegrSlope,
/// Intercept from linear regression
RegrIntercept,
/// Number of input rows in which both expressions are not null
RegrCount,
/// R-squared value from linear regression
RegrR2,
/// Average of the independent variable
RegrAvgx,
/// Average of the dependent variable
RegrAvgy,
/// Sum of squares of the independent variable
RegrSXX,
/// Sum of squares of the dependent variable
RegrSYY,
/// Sum of products of pairs of numbers
RegrSXY,
/// Approximate continuous percentile function
ApproxPercentileCont,
/// Approximate continuous percentile function with weight
ApproxPercentileContWithWeight,
/// ApproxMedian
ApproxMedian,
/// Grouping
Grouping,
/// Bit And
BitAnd,
/// Bit Or
BitOr,
/// Bit Xor
BitXor,
/// Bool And
BoolAnd,
/// Bool Or
BoolOr,
/// String aggregation
StringAgg,
}
impl AggregateFunction {
pub fn name(&self) -> &str {
use AggregateFunction::*;
match self {
Count => "COUNT",
Sum => "SUM",
Min => "MIN",
Max => "MAX",
Avg => "AVG",
ApproxDistinct => "APPROX_DISTINCT",
ArrayAgg => "ARRAY_AGG",
NthValue => "NTH_VALUE",
VariancePop => "VAR_POP",
Stddev => "STDDEV",
StddevPop => "STDDEV_POP",
Correlation => "CORR",
RegrSlope => "REGR_SLOPE",
RegrIntercept => "REGR_INTERCEPT",
RegrCount => "REGR_COUNT",
RegrR2 => "REGR_R2",
RegrAvgx => "REGR_AVGX",
RegrAvgy => "REGR_AVGY",
RegrSXX => "REGR_SXX",
RegrSYY => "REGR_SYY",
RegrSXY => "REGR_SXY",
ApproxPercentileCont => "APPROX_PERCENTILE_CONT",
ApproxPercentileContWithWeight => "APPROX_PERCENTILE_CONT_WITH_WEIGHT",
ApproxMedian => "APPROX_MEDIAN",
Grouping => "GROUPING",
BitAnd => "BIT_AND",
BitOr => "BIT_OR",
BitXor => "BIT_XOR",
BoolAnd => "BOOL_AND",
BoolOr => "BOOL_OR",
StringAgg => "STRING_AGG",
}
}
}
impl fmt::Display for AggregateFunction {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.name())
}
}
impl FromStr for AggregateFunction {
type Err = DataFusionError;
fn from_str(name: &str) -> Result<AggregateFunction> {
Ok(match name {
// general
"avg" => AggregateFunction::Avg,
"bit_and" => AggregateFunction::BitAnd,
"bit_or" => AggregateFunction::BitOr,
"bit_xor" => AggregateFunction::BitXor,
"bool_and" => AggregateFunction::BoolAnd,
"bool_or" => AggregateFunction::BoolOr,
"count" => AggregateFunction::Count,
"max" => AggregateFunction::Max,
"mean" => AggregateFunction::Avg,
"min" => AggregateFunction::Min,
"sum" => AggregateFunction::Sum,
"array_agg" => AggregateFunction::ArrayAgg,
"nth_value" => AggregateFunction::NthValue,
"string_agg" => AggregateFunction::StringAgg,
// statistical
"corr" => AggregateFunction::Correlation,
"stddev" => AggregateFunction::Stddev,
"stddev_pop" => AggregateFunction::StddevPop,
"stddev_samp" => AggregateFunction::Stddev,
"var_pop" => AggregateFunction::VariancePop,
"regr_slope" => AggregateFunction::RegrSlope,
"regr_intercept" => AggregateFunction::RegrIntercept,
"regr_count" => AggregateFunction::RegrCount,
"regr_r2" => AggregateFunction::RegrR2,
"regr_avgx" => AggregateFunction::RegrAvgx,
"regr_avgy" => AggregateFunction::RegrAvgy,
"regr_sxx" => AggregateFunction::RegrSXX,
"regr_syy" => AggregateFunction::RegrSYY,
"regr_sxy" => AggregateFunction::RegrSXY,
// approximate
"approx_distinct" => AggregateFunction::ApproxDistinct,
"approx_median" => AggregateFunction::ApproxMedian,
"approx_percentile_cont" => AggregateFunction::ApproxPercentileCont,
"approx_percentile_cont_with_weight" => {
AggregateFunction::ApproxPercentileContWithWeight
}
// other
"grouping" => AggregateFunction::Grouping,
_ => {
return plan_err!("There is no built-in function named {name}");
}
})
}
}
impl AggregateFunction {
/// Returns the datatype of the aggregate function given its argument types
///
/// This is used to get the returned data type for aggregate expr.
pub fn return_type(&self, input_expr_types: &[DataType]) -> Result<DataType> {
// Note that this function *must* return the same type that the respective physical expression returns
// or the execution panics.
let coerced_data_types = coerce_types(self, input_expr_types, &self.signature())
// original errors are all related to wrong function signature
// aggregate them for better error message
.map_err(|_| {
plan_datafusion_err!(
"{}",
utils::generate_signature_error_msg(
&format!("{self}"),
self.signature(),
input_expr_types,
)
)
})?;
match self {
AggregateFunction::Count | AggregateFunction::ApproxDistinct => {
Ok(DataType::Int64)
}
AggregateFunction::Max | AggregateFunction::Min => {
// For min and max agg function, the returned type is same as input type.
// The coerced_data_types is same with input_types.
Ok(coerced_data_types[0].clone())
}
AggregateFunction::Sum => sum_return_type(&coerced_data_types[0]),
AggregateFunction::BitAnd
| AggregateFunction::BitOr
| AggregateFunction::BitXor => Ok(coerced_data_types[0].clone()),
AggregateFunction::BoolAnd | AggregateFunction::BoolOr => {
Ok(DataType::Boolean)
}
AggregateFunction::VariancePop => {
variance_return_type(&coerced_data_types[0])
}
AggregateFunction::Correlation => {
correlation_return_type(&coerced_data_types[0])
}
AggregateFunction::Stddev => stddev_return_type(&coerced_data_types[0]),
AggregateFunction::StddevPop => stddev_return_type(&coerced_data_types[0]),
AggregateFunction::RegrSlope
| AggregateFunction::RegrIntercept
| AggregateFunction::RegrCount
| AggregateFunction::RegrR2
| AggregateFunction::RegrAvgx
| AggregateFunction::RegrAvgy
| AggregateFunction::RegrSXX
| AggregateFunction::RegrSYY
| AggregateFunction::RegrSXY => Ok(DataType::Float64),
AggregateFunction::Avg => avg_return_type(&coerced_data_types[0]),
AggregateFunction::ArrayAgg => Ok(DataType::List(Arc::new(Field::new(
"item",
coerced_data_types[0].clone(),
true,
)))),
AggregateFunction::ApproxPercentileCont => Ok(coerced_data_types[0].clone()),
AggregateFunction::ApproxPercentileContWithWeight => {
Ok(coerced_data_types[0].clone())
}
AggregateFunction::ApproxMedian => Ok(coerced_data_types[0].clone()),
AggregateFunction::Grouping => Ok(DataType::Int32),
AggregateFunction::NthValue => Ok(coerced_data_types[0].clone()),
AggregateFunction::StringAgg => Ok(DataType::LargeUtf8),
}
}
}
/// Returns the internal sum datatype of the avg aggregate function.
pub fn sum_type_of_avg(input_expr_types: &[DataType]) -> Result<DataType> {
// Note that this function *must* return the same type that the respective physical expression returns
// or the execution panics.
let fun = AggregateFunction::Avg;
let coerced_data_types = crate::type_coercion::aggregates::coerce_types(
&fun,
input_expr_types,
&fun.signature(),
)?;
avg_sum_type(&coerced_data_types[0])
}
impl AggregateFunction {
/// the signatures supported by the function `fun`.
pub fn signature(&self) -> Signature {
// note: the physical expression must accept the type returned by this function or the execution panics.
match self {
AggregateFunction::Count => Signature::variadic_any(Volatility::Immutable),
AggregateFunction::ApproxDistinct
| AggregateFunction::Grouping
| AggregateFunction::ArrayAgg => Signature::any(1, Volatility::Immutable),
AggregateFunction::Min | AggregateFunction::Max => {
let valid = STRINGS
.iter()
.chain(NUMERICS.iter())
.chain(TIMESTAMPS.iter())
.chain(DATES.iter())
.chain(TIMES.iter())
.chain(BINARYS.iter())
.cloned()
.collect::<Vec<_>>();
Signature::uniform(1, valid, Volatility::Immutable)
}
AggregateFunction::BitAnd
| AggregateFunction::BitOr
| AggregateFunction::BitXor => {
Signature::uniform(1, INTEGERS.to_vec(), Volatility::Immutable)
}
AggregateFunction::BoolAnd | AggregateFunction::BoolOr => {
Signature::uniform(1, vec![DataType::Boolean], Volatility::Immutable)
}
AggregateFunction::Avg
| AggregateFunction::Sum
| AggregateFunction::VariancePop
| AggregateFunction::Stddev
| AggregateFunction::StddevPop
| AggregateFunction::ApproxMedian => {
Signature::uniform(1, NUMERICS.to_vec(), Volatility::Immutable)
}
AggregateFunction::NthValue => Signature::any(2, Volatility::Immutable),
AggregateFunction::Correlation
| AggregateFunction::RegrSlope
| AggregateFunction::RegrIntercept
| AggregateFunction::RegrCount
| AggregateFunction::RegrR2
| AggregateFunction::RegrAvgx
| AggregateFunction::RegrAvgy
| AggregateFunction::RegrSXX
| AggregateFunction::RegrSYY
| AggregateFunction::RegrSXY => {
Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable)
}
AggregateFunction::ApproxPercentileCont => {
let mut variants =
Vec::with_capacity(NUMERICS.len() * (INTEGERS.len() + 1));
// Accept any numeric value paired with a float64 percentile
for num in NUMERICS {
variants
.push(TypeSignature::Exact(vec![num.clone(), DataType::Float64]));
// Additionally accept an integer number of centroids for T-Digest
for int in INTEGERS {
variants.push(TypeSignature::Exact(vec![
num.clone(),
DataType::Float64,
int.clone(),
]))
}
}
Signature::one_of(variants, Volatility::Immutable)
}
AggregateFunction::ApproxPercentileContWithWeight => Signature::one_of(
// Accept any numeric value paired with a float64 percentile
NUMERICS
.iter()
.map(|t| {
TypeSignature::Exact(vec![
t.clone(),
t.clone(),
DataType::Float64,
])
})
.collect(),
Volatility::Immutable,
),
AggregateFunction::StringAgg => {
Signature::uniform(2, STRINGS.to_vec(), Volatility::Immutable)
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use strum::IntoEnumIterator;
#[test]
// Test for AggregateFuncion's Display and from_str() implementations.
// For each variant in AggregateFuncion, it converts the variant to a string
// and then back to a variant. The test asserts that the original variant and
// the reconstructed variant are the same. This assertion is also necessary for
// function suggestion. See https://github.com/apache/datafusion/issues/8082
fn test_display_and_from_str() {
for func_original in AggregateFunction::iter() {
let func_name = func_original.to_string();
let func_from_str =
AggregateFunction::from_str(func_name.to_lowercase().as_str()).unwrap();
assert_eq!(func_from_str, func_original);
}
}
}