1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Functions for creating logical expressions

use crate::expr::{
    AggregateFunction, BinaryExpr, Cast, Exists, GroupingSet, InList, InSubquery,
    Placeholder, TryCast,
};
use crate::function::{
    AccumulatorArgs, AccumulatorFactoryFunction, PartitionEvaluatorFactory,
};
use crate::{
    aggregate_function, conditional_expressions::CaseBuilder, logical_plan::Subquery,
    AggregateUDF, Expr, LogicalPlan, Operator, ScalarFunctionImplementation, ScalarUDF,
    Signature, Volatility,
};
use crate::{AggregateUDFImpl, ColumnarValue, ScalarUDFImpl, WindowUDF, WindowUDFImpl};
use arrow::datatypes::{DataType, Field};
use datafusion_common::{Column, Result};
use std::any::Any;
use std::fmt::Debug;
use std::ops::Not;
use std::sync::Arc;

/// Create a column expression based on a qualified or unqualified column name. Will
/// normalize unquoted identifiers according to SQL rules (identifiers will become lowercase).
///
/// For example:
///
/// ```rust
/// # use datafusion_expr::col;
/// let c1 = col("a");
/// let c2 = col("A");
/// assert_eq!(c1, c2);
///
/// // note how quoting with double quotes preserves the case
/// let c3 = col(r#""A""#);
/// assert_ne!(c1, c3);
/// ```
pub fn col(ident: impl Into<Column>) -> Expr {
    Expr::Column(ident.into())
}

/// Create an out reference column which hold a reference that has been resolved to a field
/// outside of the current plan.
pub fn out_ref_col(dt: DataType, ident: impl Into<Column>) -> Expr {
    Expr::OuterReferenceColumn(dt, ident.into())
}

/// Create an unqualified column expression from the provided name, without normalizing
/// the column.
///
/// For example:
///
/// ```rust
/// # use datafusion_expr::{col, ident};
/// let c1 = ident("A"); // not normalized staying as column 'A'
/// let c2 = col("A"); // normalized via SQL rules becoming column 'a'
/// assert_ne!(c1, c2);
///
/// let c3 = col(r#""A""#);
/// assert_eq!(c1, c3);
///
/// let c4 = col("t1.a"); // parses as relation 't1' column 'a'
/// let c5 = ident("t1.a"); // parses as column 't1.a'
/// assert_ne!(c4, c5);
/// ```
pub fn ident(name: impl Into<String>) -> Expr {
    Expr::Column(Column::from_name(name))
}

/// Create placeholder value that will be filled in (such as `$1`)
///
/// Note the parameter type can be inferred using [`Expr::infer_placeholder_types`]
///
/// # Example
///
/// ```rust
/// # use datafusion_expr::{placeholder};
/// let p = placeholder("$0"); // $0, refers to parameter 1
/// assert_eq!(p.to_string(), "$0")
/// ```
pub fn placeholder(id: impl Into<String>) -> Expr {
    Expr::Placeholder(Placeholder {
        id: id.into(),
        data_type: None,
    })
}

/// Create an '*' [`Expr::Wildcard`] expression that matches all columns
///
/// # Example
///
/// ```rust
/// # use datafusion_expr::{wildcard};
/// let p = wildcard();
/// assert_eq!(p.to_string(), "*")
/// ```
pub fn wildcard() -> Expr {
    Expr::Wildcard { qualifier: None }
}

/// Return a new expression `left <op> right`
pub fn binary_expr(left: Expr, op: Operator, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(Box::new(left), op, Box::new(right)))
}

/// Return a new expression with a logical AND
pub fn and(left: Expr, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(
        Box::new(left),
        Operator::And,
        Box::new(right),
    ))
}

/// Return a new expression with a logical OR
pub fn or(left: Expr, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(
        Box::new(left),
        Operator::Or,
        Box::new(right),
    ))
}

/// Return a new expression with a logical NOT
pub fn not(expr: Expr) -> Expr {
    expr.not()
}

/// Create an expression to represent the min() aggregate function
pub fn min(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Min,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Create an expression to represent the max() aggregate function
pub fn max(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Max,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Create an expression to represent the sum() aggregate function
pub fn sum(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Sum,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Create an expression to represent the array_agg() aggregate function
pub fn array_agg(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::ArrayAgg,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Create an expression to represent the avg() aggregate function
pub fn avg(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Avg,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Create an expression to represent the count() aggregate function
pub fn count(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Count,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Return a new expression with bitwise AND
pub fn bitwise_and(left: Expr, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(
        Box::new(left),
        Operator::BitwiseAnd,
        Box::new(right),
    ))
}

/// Return a new expression with bitwise OR
pub fn bitwise_or(left: Expr, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(
        Box::new(left),
        Operator::BitwiseOr,
        Box::new(right),
    ))
}

/// Return a new expression with bitwise XOR
pub fn bitwise_xor(left: Expr, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(
        Box::new(left),
        Operator::BitwiseXor,
        Box::new(right),
    ))
}

/// Return a new expression with bitwise SHIFT RIGHT
pub fn bitwise_shift_right(left: Expr, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(
        Box::new(left),
        Operator::BitwiseShiftRight,
        Box::new(right),
    ))
}

/// Return a new expression with bitwise SHIFT LEFT
pub fn bitwise_shift_left(left: Expr, right: Expr) -> Expr {
    Expr::BinaryExpr(BinaryExpr::new(
        Box::new(left),
        Operator::BitwiseShiftLeft,
        Box::new(right),
    ))
}

/// Create an expression to represent the count(distinct) aggregate function
pub fn count_distinct(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Count,
        vec![expr],
        true,
        None,
        None,
        None,
    ))
}

/// Create an in_list expression
pub fn in_list(expr: Expr, list: Vec<Expr>, negated: bool) -> Expr {
    Expr::InList(InList::new(Box::new(expr), list, negated))
}

/// Returns the approximate number of distinct input values.
/// This function provides an approximation of count(DISTINCT x).
/// Zero is returned if all input values are null.
/// This function should produce a standard error of 0.81%,
/// which is the standard deviation of the (approximately normal)
/// error distribution over all possible sets.
/// It does not guarantee an upper bound on the error for any specific input set.
pub fn approx_distinct(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::ApproxDistinct,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Calculate the median for `expr`.
pub fn median(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Median,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Calculate an approximation of the median for `expr`.
pub fn approx_median(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::ApproxMedian,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Calculate an approximation of the specified `percentile` for `expr`.
pub fn approx_percentile_cont(expr: Expr, percentile: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::ApproxPercentileCont,
        vec![expr, percentile],
        false,
        None,
        None,
        None,
    ))
}

/// Calculate an approximation of the specified `percentile` for `expr` and `weight_expr`.
pub fn approx_percentile_cont_with_weight(
    expr: Expr,
    weight_expr: Expr,
    percentile: Expr,
) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::ApproxPercentileContWithWeight,
        vec![expr, weight_expr, percentile],
        false,
        None,
        None,
        None,
    ))
}

/// Create an EXISTS subquery expression
pub fn exists(subquery: Arc<LogicalPlan>) -> Expr {
    let outer_ref_columns = subquery.all_out_ref_exprs();
    Expr::Exists(Exists {
        subquery: Subquery {
            subquery,
            outer_ref_columns,
        },
        negated: false,
    })
}

/// Create a NOT EXISTS subquery expression
pub fn not_exists(subquery: Arc<LogicalPlan>) -> Expr {
    let outer_ref_columns = subquery.all_out_ref_exprs();
    Expr::Exists(Exists {
        subquery: Subquery {
            subquery,
            outer_ref_columns,
        },
        negated: true,
    })
}

/// Create an IN subquery expression
pub fn in_subquery(expr: Expr, subquery: Arc<LogicalPlan>) -> Expr {
    let outer_ref_columns = subquery.all_out_ref_exprs();
    Expr::InSubquery(InSubquery::new(
        Box::new(expr),
        Subquery {
            subquery,
            outer_ref_columns,
        },
        false,
    ))
}

/// Create a NOT IN subquery expression
pub fn not_in_subquery(expr: Expr, subquery: Arc<LogicalPlan>) -> Expr {
    let outer_ref_columns = subquery.all_out_ref_exprs();
    Expr::InSubquery(InSubquery::new(
        Box::new(expr),
        Subquery {
            subquery,
            outer_ref_columns,
        },
        true,
    ))
}

/// Create a scalar subquery expression
pub fn scalar_subquery(subquery: Arc<LogicalPlan>) -> Expr {
    let outer_ref_columns = subquery.all_out_ref_exprs();
    Expr::ScalarSubquery(Subquery {
        subquery,
        outer_ref_columns,
    })
}

/// Create an expression to represent the stddev() aggregate function
pub fn stddev(expr: Expr) -> Expr {
    Expr::AggregateFunction(AggregateFunction::new(
        aggregate_function::AggregateFunction::Stddev,
        vec![expr],
        false,
        None,
        None,
        None,
    ))
}

/// Create a grouping set
pub fn grouping_set(exprs: Vec<Vec<Expr>>) -> Expr {
    Expr::GroupingSet(GroupingSet::GroupingSets(exprs))
}

/// Create a grouping set for all combination of `exprs`
pub fn cube(exprs: Vec<Expr>) -> Expr {
    Expr::GroupingSet(GroupingSet::Cube(exprs))
}

/// Create a grouping set for rollup
pub fn rollup(exprs: Vec<Expr>) -> Expr {
    Expr::GroupingSet(GroupingSet::Rollup(exprs))
}

/// Create a cast expression
pub fn cast(expr: Expr, data_type: DataType) -> Expr {
    Expr::Cast(Cast::new(Box::new(expr), data_type))
}

/// Create a try cast expression
pub fn try_cast(expr: Expr, data_type: DataType) -> Expr {
    Expr::TryCast(TryCast::new(Box::new(expr), data_type))
}

/// Create is null expression
pub fn is_null(expr: Expr) -> Expr {
    Expr::IsNull(Box::new(expr))
}

/// Create is true expression
pub fn is_true(expr: Expr) -> Expr {
    Expr::IsTrue(Box::new(expr))
}

/// Create is not true expression
pub fn is_not_true(expr: Expr) -> Expr {
    Expr::IsNotTrue(Box::new(expr))
}

/// Create is false expression
pub fn is_false(expr: Expr) -> Expr {
    Expr::IsFalse(Box::new(expr))
}

/// Create is not false expression
pub fn is_not_false(expr: Expr) -> Expr {
    Expr::IsNotFalse(Box::new(expr))
}

/// Create is unknown expression
pub fn is_unknown(expr: Expr) -> Expr {
    Expr::IsUnknown(Box::new(expr))
}

/// Create is not unknown expression
pub fn is_not_unknown(expr: Expr) -> Expr {
    Expr::IsNotUnknown(Box::new(expr))
}

/// Create a CASE WHEN statement with literal WHEN expressions for comparison to the base expression.
pub fn case(expr: Expr) -> CaseBuilder {
    CaseBuilder::new(Some(Box::new(expr)), vec![], vec![], None)
}

/// Create a CASE WHEN statement with boolean WHEN expressions and no base expression.
pub fn when(when: Expr, then: Expr) -> CaseBuilder {
    CaseBuilder::new(None, vec![when], vec![then], None)
}

/// Convenience method to create a new user defined scalar function (UDF) with a
/// specific signature and specific return type.
///
/// Note this function does not expose all available features of [`ScalarUDF`],
/// such as
///
/// * computing return types based on input types
/// * multiple [`Signature`]s
/// * aliases
///
/// See [`ScalarUDF`] for details and examples on how to use the full
/// functionality.
pub fn create_udf(
    name: &str,
    input_types: Vec<DataType>,
    return_type: Arc<DataType>,
    volatility: Volatility,
    fun: ScalarFunctionImplementation,
) -> ScalarUDF {
    let return_type = Arc::try_unwrap(return_type).unwrap_or_else(|t| t.as_ref().clone());
    ScalarUDF::from(SimpleScalarUDF::new(
        name,
        input_types,
        return_type,
        volatility,
        fun,
    ))
}

/// Implements [`ScalarUDFImpl`] for functions that have a single signature and
/// return type.
pub struct SimpleScalarUDF {
    name: String,
    signature: Signature,
    return_type: DataType,
    fun: ScalarFunctionImplementation,
}

impl Debug for SimpleScalarUDF {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("ScalarUDF")
            .field("name", &self.name)
            .field("signature", &self.signature)
            .field("fun", &"<FUNC>")
            .finish()
    }
}

impl SimpleScalarUDF {
    /// Create a new `SimpleScalarUDF` from a name, input types, return type and
    /// implementation. Implementing [`ScalarUDFImpl`] allows more flexibility
    pub fn new(
        name: impl Into<String>,
        input_types: Vec<DataType>,
        return_type: DataType,
        volatility: Volatility,
        fun: ScalarFunctionImplementation,
    ) -> Self {
        let name = name.into();
        let signature = Signature::exact(input_types, volatility);
        Self {
            name,
            signature,
            return_type,
            fun,
        }
    }
}

impl ScalarUDFImpl for SimpleScalarUDF {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
        Ok(self.return_type.clone())
    }

    fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
        (self.fun)(args)
    }
}

/// Creates a new UDAF with a specific signature, state type and return type.
/// The signature and state type must match the `Accumulator's implementation`.
pub fn create_udaf(
    name: &str,
    input_type: Vec<DataType>,
    return_type: Arc<DataType>,
    volatility: Volatility,
    accumulator: AccumulatorFactoryFunction,
    state_type: Arc<Vec<DataType>>,
) -> AggregateUDF {
    let return_type = Arc::try_unwrap(return_type).unwrap_or_else(|t| t.as_ref().clone());
    let state_type = Arc::try_unwrap(state_type).unwrap_or_else(|t| t.as_ref().clone());
    let state_fields = state_type
        .into_iter()
        .enumerate()
        .map(|(i, t)| Field::new(format!("{i}"), t, true))
        .collect::<Vec<_>>();
    AggregateUDF::from(SimpleAggregateUDF::new(
        name,
        input_type,
        return_type,
        volatility,
        accumulator,
        state_fields,
    ))
}

/// Implements [`AggregateUDFImpl`] for functions that have a single signature and
/// return type.
pub struct SimpleAggregateUDF {
    name: String,
    signature: Signature,
    return_type: DataType,
    accumulator: AccumulatorFactoryFunction,
    state_fields: Vec<Field>,
}

impl Debug for SimpleAggregateUDF {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("AggregateUDF")
            .field("name", &self.name)
            .field("signature", &self.signature)
            .field("fun", &"<FUNC>")
            .finish()
    }
}

impl SimpleAggregateUDF {
    /// Create a new `AggregateUDFImpl` from a name, input types, return type, state type and
    /// implementation. Implementing [`AggregateUDFImpl`] allows more flexibility
    pub fn new(
        name: impl Into<String>,
        input_type: Vec<DataType>,
        return_type: DataType,
        volatility: Volatility,
        accumulator: AccumulatorFactoryFunction,
        state_fields: Vec<Field>,
    ) -> Self {
        let name = name.into();
        let signature = Signature::exact(input_type, volatility);
        Self {
            name,
            signature,
            return_type,
            accumulator,
            state_fields,
        }
    }

    pub fn new_with_signature(
        name: impl Into<String>,
        signature: Signature,
        return_type: DataType,
        accumulator: AccumulatorFactoryFunction,
        state_fields: Vec<Field>,
    ) -> Self {
        let name = name.into();
        Self {
            name,
            signature,
            return_type,
            accumulator,
            state_fields,
        }
    }
}

impl AggregateUDFImpl for SimpleAggregateUDF {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
        Ok(self.return_type.clone())
    }

    fn accumulator(
        &self,
        acc_args: AccumulatorArgs,
    ) -> Result<Box<dyn crate::Accumulator>> {
        (self.accumulator)(acc_args)
    }

    fn state_fields(
        &self,
        _name: &str,
        _value_type: DataType,
        _ordering_fields: Vec<Field>,
    ) -> Result<Vec<Field>> {
        Ok(self.state_fields.clone())
    }
}

/// Creates a new UDWF with a specific signature, state type and return type.
///
/// The signature and state type must match the [`PartitionEvaluator`]'s implementation`.
///
/// [`PartitionEvaluator`]: crate::PartitionEvaluator
pub fn create_udwf(
    name: &str,
    input_type: DataType,
    return_type: Arc<DataType>,
    volatility: Volatility,
    partition_evaluator_factory: PartitionEvaluatorFactory,
) -> WindowUDF {
    let return_type = Arc::try_unwrap(return_type).unwrap_or_else(|t| t.as_ref().clone());
    WindowUDF::from(SimpleWindowUDF::new(
        name,
        input_type,
        return_type,
        volatility,
        partition_evaluator_factory,
    ))
}

/// Implements [`WindowUDFImpl`] for functions that have a single signature and
/// return type.
pub struct SimpleWindowUDF {
    name: String,
    signature: Signature,
    return_type: DataType,
    partition_evaluator_factory: PartitionEvaluatorFactory,
}

impl Debug for SimpleWindowUDF {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        f.debug_struct("WindowUDF")
            .field("name", &self.name)
            .field("signature", &self.signature)
            .field("return_type", &"<func>")
            .field("partition_evaluator_factory", &"<FUNC>")
            .finish()
    }
}

impl SimpleWindowUDF {
    /// Create a new `SimpleWindowUDF` from a name, input types, return type and
    /// implementation. Implementing [`WindowUDFImpl`] allows more flexibility
    pub fn new(
        name: impl Into<String>,
        input_type: DataType,
        return_type: DataType,
        volatility: Volatility,
        partition_evaluator_factory: PartitionEvaluatorFactory,
    ) -> Self {
        let name = name.into();
        let signature = Signature::exact([input_type].to_vec(), volatility);
        Self {
            name,
            signature,
            return_type,
            partition_evaluator_factory,
        }
    }
}

impl WindowUDFImpl for SimpleWindowUDF {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        &self.name
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
        Ok(self.return_type.clone())
    }

    fn partition_evaluator(&self) -> Result<Box<dyn crate::PartitionEvaluator>> {
        (self.partition_evaluator_factory)()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn filter_is_null_and_is_not_null() {
        let col_null = col("col1");
        let col_not_null = ident("col2");
        assert_eq!(format!("{}", col_null.is_null()), "col1 IS NULL");
        assert_eq!(
            format!("{}", col_not_null.is_not_null()),
            "col2 IS NOT NULL"
        );
    }
}