1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Tree node implementation for logical plan
use crate::LogicalPlan;
use datafusion_common::tree_node::{TreeNodeVisitor, VisitRecursion};
use datafusion_common::{tree_node::TreeNode, Result};
use std::borrow::Cow;
impl TreeNode for LogicalPlan {
fn children_nodes(&self) -> Vec<Cow<Self>> {
self.inputs().into_iter().map(Cow::Borrowed).collect()
}
fn apply<F>(&self, op: &mut F) -> Result<VisitRecursion>
where
F: FnMut(&Self) -> Result<VisitRecursion>,
{
// Note,
//
// Compared to the default implementation, we need to invoke
// [`Self::apply_subqueries`] before visiting its children
match op(self)? {
VisitRecursion::Continue => {}
// If the recursion should skip, do not apply to its children. And let the recursion continue
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
// If the recursion should stop, do not apply to its children
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
};
self.apply_subqueries(op)?;
self.apply_children(&mut |node| node.apply(op))
}
/// To use, define a struct that implements the trait [`TreeNodeVisitor`] and then invoke
/// [`LogicalPlan::visit`].
///
/// For example, for a logical plan like:
///
/// ```text
/// Projection: id
/// Filter: state Eq Utf8(\"CO\")\
/// CsvScan: employee.csv projection=Some([0, 3])";
/// ```
///
/// The sequence of visit operations would be:
/// ```text
/// visitor.pre_visit(Projection)
/// visitor.pre_visit(Filter)
/// visitor.pre_visit(CsvScan)
/// visitor.post_visit(CsvScan)
/// visitor.post_visit(Filter)
/// visitor.post_visit(Projection)
/// ```
fn visit<V: TreeNodeVisitor<N = Self>>(
&self,
visitor: &mut V,
) -> Result<VisitRecursion> {
// Compared to the default implementation, we need to invoke
// [`Self::visit_subqueries`] before visiting its children
match visitor.pre_visit(self)? {
VisitRecursion::Continue => {}
// If the recursion should skip, do not apply to its children. And let the recursion continue
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
// If the recursion should stop, do not apply to its children
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
};
self.visit_subqueries(visitor)?;
match self.apply_children(&mut |node| node.visit(visitor))? {
VisitRecursion::Continue => {}
// If the recursion should skip, do not apply to its children. And let the recursion continue
VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
// If the recursion should stop, do not apply to its children
VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
}
visitor.post_visit(self)
}
fn map_children<F>(self, transform: F) -> Result<Self>
where
F: FnMut(Self) -> Result<Self>,
{
let old_children = self.inputs();
let new_children = old_children
.iter()
.map(|&c| c.clone())
.map(transform)
.collect::<Result<Vec<_>>>()?;
// if any changes made, make a new child
if old_children
.iter()
.zip(new_children.iter())
.any(|(c1, c2)| c1 != &c2)
{
self.with_new_exprs(self.expressions(), new_children.as_slice())
} else {
Ok(self)
}
}
}