1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::logical_plan::builder::validate_unique_names;
use crate::logical_plan::display::{GraphvizVisitor, IndentVisitor};
use crate::logical_plan::extension::UserDefinedLogicalNode;
use crate::utils::{
    exprlist_to_fields, grouping_set_expr_count, grouping_set_to_exprlist,
};
use crate::{Expr, TableProviderFilterPushDown, TableSource};
use arrow::datatypes::{DataType, Field, Schema, SchemaRef};
use datafusion_common::{plan_err, Column, DFSchema, DFSchemaRef, DataFusionError};
use std::collections::HashSet;
///! Logical plan types
use std::fmt::{self, Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::sync::Arc;

/// A LogicalPlan represents the different types of relational
/// operators (such as Projection, Filter, etc) and can be created by
/// the SQL query planner and the DataFrame API.
///
/// A LogicalPlan represents transforming an input relation (table) to
/// an output relation (table) with a (potentially) different
/// schema. A plan represents a dataflow tree where data flows
/// from leaves up to the root to produce the query result.
#[derive(Clone)]
pub enum LogicalPlan {
    /// Evaluates an arbitrary list of expressions (essentially a
    /// SELECT with an expression list) on its input.
    Projection(Projection),
    /// Filters rows from its input that do not match an
    /// expression (essentially a WHERE clause with a predicate
    /// expression).
    ///
    /// Semantically, `<predicate>` is evaluated for each row of the input;
    /// If the value of `<predicate>` is true, the input row is passed to
    /// the output. If the value of `<predicate>` is false, the row is
    /// discarded.
    Filter(Filter),
    /// Window its input based on a set of window spec and window function (e.g. SUM or RANK)
    Window(Window),
    /// Aggregates its input based on a set of grouping and aggregate
    /// expressions (e.g. SUM).
    Aggregate(Aggregate),
    /// Sorts its input according to a list of sort expressions.
    Sort(Sort),
    /// Join two logical plans on one or more join columns
    Join(Join),
    /// Apply Cross Join to two logical plans
    CrossJoin(CrossJoin),
    /// Repartition the plan based on a partitioning scheme.
    Repartition(Repartition),
    /// Union multiple inputs
    Union(Union),
    /// Produces rows from a table provider by reference or from the context
    TableScan(TableScan),
    /// Produces no rows: An empty relation with an empty schema
    EmptyRelation(EmptyRelation),
    /// Subquery
    Subquery(Subquery),
    /// Aliased relation provides, or changes, the name of a relation.
    SubqueryAlias(SubqueryAlias),
    /// Skip some number of rows, and then fetch some number of rows.
    Limit(Limit),
    /// Creates an external table.
    CreateExternalTable(CreateExternalTable),
    /// Creates an in memory table.
    CreateMemoryTable(CreateMemoryTable),
    /// Creates a new view.
    CreateView(CreateView),
    /// Creates a new catalog schema.
    CreateCatalogSchema(CreateCatalogSchema),
    /// Creates a new catalog (aka "Database").
    CreateCatalog(CreateCatalog),
    /// Drops a table.
    DropTable(DropTable),
    /// Drops a view.
    DropView(DropView),
    /// Values expression. See
    /// [Postgres VALUES](https://www.postgresql.org/docs/current/queries-values.html)
    /// documentation for more details.
    Values(Values),
    /// Produces a relation with string representations of
    /// various parts of the plan
    Explain(Explain),
    /// Runs the actual plan, and then prints the physical plan with
    /// with execution metrics.
    Analyze(Analyze),
    /// Extension operator defined outside of DataFusion
    Extension(Extension),
    /// Remove duplicate rows from the input
    Distinct(Distinct),
}

impl LogicalPlan {
    /// Get a reference to the logical plan's schema
    pub fn schema(&self) -> &DFSchemaRef {
        match self {
            LogicalPlan::EmptyRelation(EmptyRelation { schema, .. }) => schema,
            LogicalPlan::Values(Values { schema, .. }) => schema,
            LogicalPlan::TableScan(TableScan {
                projected_schema, ..
            }) => projected_schema,
            LogicalPlan::Projection(Projection { schema, .. }) => schema,
            LogicalPlan::Filter(Filter { input, .. }) => input.schema(),
            LogicalPlan::Distinct(Distinct { input }) => input.schema(),
            LogicalPlan::Window(Window { schema, .. }) => schema,
            LogicalPlan::Aggregate(Aggregate { schema, .. }) => schema,
            LogicalPlan::Sort(Sort { input, .. }) => input.schema(),
            LogicalPlan::Join(Join { schema, .. }) => schema,
            LogicalPlan::CrossJoin(CrossJoin { schema, .. }) => schema,
            LogicalPlan::Repartition(Repartition { input, .. }) => input.schema(),
            LogicalPlan::Limit(Limit { input, .. }) => input.schema(),
            LogicalPlan::Subquery(Subquery { subquery, .. }) => subquery.schema(),
            LogicalPlan::SubqueryAlias(SubqueryAlias { schema, .. }) => schema,
            LogicalPlan::CreateExternalTable(CreateExternalTable { schema, .. }) => {
                schema
            }
            LogicalPlan::Explain(explain) => &explain.schema,
            LogicalPlan::Analyze(analyze) => &analyze.schema,
            LogicalPlan::Extension(extension) => extension.node.schema(),
            LogicalPlan::Union(Union { schema, .. }) => schema,
            LogicalPlan::CreateMemoryTable(CreateMemoryTable { input, .. })
            | LogicalPlan::CreateView(CreateView { input, .. }) => input.schema(),
            LogicalPlan::CreateCatalogSchema(CreateCatalogSchema { schema, .. }) => {
                schema
            }
            LogicalPlan::CreateCatalog(CreateCatalog { schema, .. }) => schema,
            LogicalPlan::DropTable(DropTable { schema, .. }) => schema,
            LogicalPlan::DropView(DropView { schema, .. }) => schema,
        }
    }

    /// Get a vector of references to all schemas in every node of the logical plan
    pub fn all_schemas(&self) -> Vec<&DFSchemaRef> {
        match self {
            LogicalPlan::TableScan(TableScan {
                projected_schema, ..
            }) => vec![projected_schema],
            LogicalPlan::Values(Values { schema, .. }) => vec![schema],
            LogicalPlan::Window(Window { input, schema, .. })
            | LogicalPlan::Projection(Projection { input, schema, .. })
            | LogicalPlan::Aggregate(Aggregate { input, schema, .. }) => {
                let mut schemas = input.all_schemas();
                schemas.insert(0, schema);
                schemas
            }
            LogicalPlan::Join(Join {
                left,
                right,
                schema,
                ..
            })
            | LogicalPlan::CrossJoin(CrossJoin {
                left,
                right,
                schema,
            }) => {
                let mut schemas = left.all_schemas();
                schemas.extend(right.all_schemas());
                schemas.insert(0, schema);
                schemas
            }
            LogicalPlan::Subquery(Subquery { subquery, .. }) => subquery.all_schemas(),
            LogicalPlan::SubqueryAlias(SubqueryAlias { schema, .. }) => {
                vec![schema]
            }
            LogicalPlan::Union(Union { schema, .. }) => {
                vec![schema]
            }
            LogicalPlan::Extension(extension) => vec![extension.node.schema()],
            LogicalPlan::Explain(Explain { schema, .. })
            | LogicalPlan::Analyze(Analyze { schema, .. })
            | LogicalPlan::EmptyRelation(EmptyRelation { schema, .. })
            | LogicalPlan::CreateExternalTable(CreateExternalTable { schema, .. })
            | LogicalPlan::CreateCatalogSchema(CreateCatalogSchema { schema, .. })
            | LogicalPlan::CreateCatalog(CreateCatalog { schema, .. }) => {
                vec![schema]
            }
            LogicalPlan::Limit(Limit { input, .. })
            | LogicalPlan::Repartition(Repartition { input, .. })
            | LogicalPlan::Sort(Sort { input, .. })
            | LogicalPlan::CreateMemoryTable(CreateMemoryTable { input, .. })
            | LogicalPlan::CreateView(CreateView { input, .. })
            | LogicalPlan::Filter(Filter { input, .. }) => input.all_schemas(),
            LogicalPlan::Distinct(Distinct { input, .. }) => input.all_schemas(),
            LogicalPlan::DropTable(_) | LogicalPlan::DropView(_) => vec![],
        }
    }

    /// Returns the (fixed) output schema for explain plans
    pub fn explain_schema() -> SchemaRef {
        SchemaRef::new(Schema::new(vec![
            Field::new("plan_type", DataType::Utf8, false),
            Field::new("plan", DataType::Utf8, false),
        ]))
    }

    /// returns all expressions (non-recursively) in the current
    /// logical plan node. This does not include expressions in any
    /// children
    pub fn expressions(self: &LogicalPlan) -> Vec<Expr> {
        match self {
            LogicalPlan::Projection(Projection { expr, .. }) => expr.clone(),
            LogicalPlan::Values(Values { values, .. }) => {
                values.iter().flatten().cloned().collect()
            }
            LogicalPlan::Filter(Filter { predicate, .. }) => vec![predicate.clone()],
            LogicalPlan::Repartition(Repartition {
                partitioning_scheme,
                ..
            }) => match partitioning_scheme {
                Partitioning::Hash(expr, _) => expr.clone(),
                Partitioning::DistributeBy(expr) => expr.clone(),
                Partitioning::RoundRobinBatch(_) => vec![],
            },
            LogicalPlan::Window(Window { window_expr, .. }) => window_expr.clone(),
            LogicalPlan::Aggregate(Aggregate {
                group_expr,
                aggr_expr,
                ..
            }) => group_expr.iter().chain(aggr_expr.iter()).cloned().collect(),
            LogicalPlan::Join(Join { on, filter, .. }) => on
                .iter()
                .flat_map(|(l, r)| vec![Expr::Column(l.clone()), Expr::Column(r.clone())])
                .chain(
                    filter
                        .as_ref()
                        .map(|expr| vec![expr.clone()])
                        .unwrap_or_default(),
                )
                .collect(),
            LogicalPlan::Sort(Sort { expr, .. }) => expr.clone(),
            LogicalPlan::Extension(extension) => extension.node.expressions(),
            // plans without expressions
            LogicalPlan::TableScan { .. }
            | LogicalPlan::EmptyRelation(_)
            | LogicalPlan::Subquery(_)
            | LogicalPlan::SubqueryAlias(_)
            | LogicalPlan::Limit(_)
            | LogicalPlan::CreateExternalTable(_)
            | LogicalPlan::CreateMemoryTable(_)
            | LogicalPlan::CreateView(_)
            | LogicalPlan::CreateCatalogSchema(_)
            | LogicalPlan::CreateCatalog(_)
            | LogicalPlan::DropTable(_)
            | LogicalPlan::DropView(_)
            | LogicalPlan::CrossJoin(_)
            | LogicalPlan::Analyze { .. }
            | LogicalPlan::Explain { .. }
            | LogicalPlan::Union(_)
            | LogicalPlan::Distinct(_) => {
                vec![]
            }
        }
    }

    /// returns all inputs of this `LogicalPlan` node. Does not
    /// include inputs to inputs, or subqueries.
    pub fn inputs(self: &LogicalPlan) -> Vec<&LogicalPlan> {
        match self {
            LogicalPlan::Projection(Projection { input, .. }) => vec![input],
            LogicalPlan::Filter(Filter { input, .. }) => vec![input],
            LogicalPlan::Repartition(Repartition { input, .. }) => vec![input],
            LogicalPlan::Window(Window { input, .. }) => vec![input],
            LogicalPlan::Aggregate(Aggregate { input, .. }) => vec![input],
            LogicalPlan::Sort(Sort { input, .. }) => vec![input],
            LogicalPlan::Join(Join { left, right, .. }) => vec![left, right],
            LogicalPlan::CrossJoin(CrossJoin { left, right, .. }) => vec![left, right],
            LogicalPlan::Limit(Limit { input, .. }) => vec![input],
            LogicalPlan::Subquery(Subquery { subquery, .. }) => vec![subquery],
            LogicalPlan::SubqueryAlias(SubqueryAlias { input, .. }) => vec![input],
            LogicalPlan::Extension(extension) => extension.node.inputs(),
            LogicalPlan::Union(Union { inputs, .. }) => {
                inputs.iter().map(|arc| arc.as_ref()).collect()
            }
            LogicalPlan::Distinct(Distinct { input }) => vec![input],
            LogicalPlan::Explain(explain) => vec![&explain.plan],
            LogicalPlan::Analyze(analyze) => vec![&analyze.input],
            LogicalPlan::CreateMemoryTable(CreateMemoryTable { input, .. })
            | LogicalPlan::CreateView(CreateView { input, .. }) => {
                vec![input]
            }
            // plans without inputs
            LogicalPlan::TableScan { .. }
            | LogicalPlan::EmptyRelation { .. }
            | LogicalPlan::Values { .. }
            | LogicalPlan::CreateExternalTable(_)
            | LogicalPlan::CreateCatalogSchema(_)
            | LogicalPlan::CreateCatalog(_)
            | LogicalPlan::DropTable(_)
            | LogicalPlan::DropView(_) => vec![],
        }
    }

    /// returns all `Using` join columns in a logical plan
    pub fn using_columns(&self) -> Result<Vec<HashSet<Column>>, DataFusionError> {
        struct UsingJoinColumnVisitor {
            using_columns: Vec<HashSet<Column>>,
        }

        impl PlanVisitor for UsingJoinColumnVisitor {
            type Error = DataFusionError;

            fn pre_visit(&mut self, plan: &LogicalPlan) -> Result<bool, Self::Error> {
                if let LogicalPlan::Join(Join {
                    join_constraint: JoinConstraint::Using,
                    on,
                    ..
                }) = plan
                {
                    self.using_columns.push(
                        on.iter()
                            .flat_map(|entry| [&entry.0, &entry.1])
                            .cloned()
                            .collect::<HashSet<Column>>(),
                    );
                }
                Ok(true)
            }
        }

        let mut visitor = UsingJoinColumnVisitor {
            using_columns: vec![],
        };
        self.accept(&mut visitor)?;
        Ok(visitor.using_columns)
    }
}

/// Trait that implements the [Visitor
/// pattern](https://en.wikipedia.org/wiki/Visitor_pattern) for a
/// depth first walk of `LogicalPlan` nodes. `pre_visit` is called
/// before any children are visited, and then `post_visit` is called
/// after all children have been visited.
////
/// To use, define a struct that implements this trait and then invoke
/// [`LogicalPlan::accept`].
///
/// For example, for a logical plan like:
///
/// ```text
/// Projection: id
///    Filter: state Eq Utf8(\"CO\")\
///       CsvScan: employee.csv projection=Some([0, 3])";
/// ```
///
/// The sequence of visit operations would be:
/// ```text
/// visitor.pre_visit(Projection)
/// visitor.pre_visit(Filter)
/// visitor.pre_visit(CsvScan)
/// visitor.post_visit(CsvScan)
/// visitor.post_visit(Filter)
/// visitor.post_visit(Projection)
/// ```
pub trait PlanVisitor {
    /// The type of error returned by this visitor
    type Error;

    /// Invoked on a logical plan before any of its child inputs have been
    /// visited. If Ok(true) is returned, the recursion continues. If
    /// Err(..) or Ok(false) are returned, the recursion stops
    /// immediately and the error, if any, is returned to `accept`
    fn pre_visit(&mut self, plan: &LogicalPlan)
        -> std::result::Result<bool, Self::Error>;

    /// Invoked on a logical plan after all of its child inputs have
    /// been visited. The return value is handled the same as the
    /// return value of `pre_visit`. The provided default implementation
    /// returns `Ok(true)`.
    fn post_visit(
        &mut self,
        _plan: &LogicalPlan,
    ) -> std::result::Result<bool, Self::Error> {
        Ok(true)
    }
}

impl LogicalPlan {
    /// returns all inputs in the logical plan. Returns Ok(true) if
    /// all nodes were visited, and Ok(false) if any call to
    /// `pre_visit` or `post_visit` returned Ok(false) and may have
    /// cut short the recursion
    pub fn accept<V>(&self, visitor: &mut V) -> std::result::Result<bool, V::Error>
    where
        V: PlanVisitor,
    {
        if !visitor.pre_visit(self)? {
            return Ok(false);
        }

        let recurse = match self {
            LogicalPlan::Projection(Projection { .. }) => {
                self.visit_all_inputs(visitor)?
            }
            LogicalPlan::Filter(Filter { .. }) => self.visit_all_inputs(visitor)?,
            LogicalPlan::Repartition(Repartition { input, .. }) => {
                input.accept(visitor)?
            }
            LogicalPlan::Window(Window { input, .. }) => input.accept(visitor)?,
            LogicalPlan::Aggregate(Aggregate { input, .. }) => input.accept(visitor)?,
            LogicalPlan::Sort(Sort { input, .. }) => input.accept(visitor)?,
            LogicalPlan::Join(Join { left, right, .. })
            | LogicalPlan::CrossJoin(CrossJoin { left, right, .. }) => {
                left.accept(visitor)? && right.accept(visitor)?
            }
            LogicalPlan::Union(Union { inputs, .. }) => {
                for input in inputs {
                    if !input.accept(visitor)? {
                        return Ok(false);
                    }
                }
                true
            }
            LogicalPlan::Distinct(Distinct { input }) => input.accept(visitor)?,
            LogicalPlan::Limit(Limit { input, .. }) => input.accept(visitor)?,
            LogicalPlan::Subquery(Subquery { subquery, .. }) => {
                subquery.accept(visitor)?
            }
            LogicalPlan::SubqueryAlias(SubqueryAlias { input, .. }) => {
                input.accept(visitor)?
            }
            LogicalPlan::CreateMemoryTable(CreateMemoryTable { input, .. })
            | LogicalPlan::CreateView(CreateView { input, .. }) => {
                input.accept(visitor)?
            }
            LogicalPlan::Extension(extension) => {
                for input in extension.node.inputs() {
                    if !input.accept(visitor)? {
                        return Ok(false);
                    }
                }
                true
            }
            LogicalPlan::Explain(explain) => explain.plan.accept(visitor)?,
            LogicalPlan::Analyze(analyze) => analyze.input.accept(visitor)?,
            // plans without inputs
            LogicalPlan::TableScan { .. }
            | LogicalPlan::EmptyRelation(_)
            | LogicalPlan::Values(_)
            | LogicalPlan::CreateExternalTable(_)
            | LogicalPlan::CreateCatalogSchema(_)
            | LogicalPlan::CreateCatalog(_)
            | LogicalPlan::DropTable(_)
            | LogicalPlan::DropView(_) => true,
        };
        if !recurse {
            return Ok(false);
        }

        if !visitor.post_visit(self)? {
            return Ok(false);
        }

        Ok(true)
    }

    /// Visit all inputs, including subqueries
    pub fn visit_all_inputs<V>(&self, visitor: &mut V) -> Result<bool, V::Error>
    where
        V: PlanVisitor,
    {
        for input in self.all_inputs() {
            if !input.accept(visitor)? {
                return Ok(false);
            }
        }

        Ok(true)
    }

    /// Get all plan inputs, including subqueries from expressions
    fn all_inputs(&self) -> Vec<Arc<LogicalPlan>> {
        let mut inputs = vec![];
        for expr in self.expressions() {
            self.collect_subqueries(&expr, &mut inputs);
        }
        for input in self.inputs() {
            inputs.push(Arc::new(input.clone()));
        }
        inputs
    }

    fn collect_subqueries(&self, expr: &Expr, sub: &mut Vec<Arc<LogicalPlan>>) {
        match expr {
            Expr::BinaryExpr { left, right, .. } => {
                self.collect_subqueries(left, sub);
                self.collect_subqueries(right, sub);
            }
            Expr::Exists { subquery, .. } => {
                sub.push(Arc::new(LogicalPlan::Subquery(subquery.clone())));
            }
            Expr::InSubquery { subquery, .. } => {
                sub.push(Arc::new(LogicalPlan::Subquery(subquery.clone())));
            }
            Expr::ScalarSubquery(subquery) => {
                sub.push(Arc::new(LogicalPlan::Subquery(subquery.clone())));
            }
            _ => {}
        }
    }
}

// Various implementations for printing out LogicalPlans
impl LogicalPlan {
    /// Return a `format`able structure that produces a single line
    /// per node. For example:
    ///
    /// ```text
    /// Projection: employee.id
    ///    Filter: employee.state Eq Utf8(\"CO\")\
    ///       CsvScan: employee projection=Some([0, 3])
    /// ```
    ///
    /// ```
    /// use arrow::datatypes::{Field, Schema, DataType};
    /// use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
    /// let schema = Schema::new(vec![
    ///     Field::new("id", DataType::Int32, false),
    /// ]);
    /// let plan = table_scan(Some("t1"), &schema, None).unwrap()
    ///     .filter(col("id").eq(lit(5))).unwrap()
    ///     .build().unwrap();
    ///
    /// // Format using display_indent
    /// let display_string = format!("{}", plan.display_indent());
    ///
    /// assert_eq!("Filter: t1.id = Int32(5)\n  TableScan: t1",
    ///             display_string);
    /// ```
    pub fn display_indent(&self) -> impl fmt::Display + '_ {
        // Boilerplate structure to wrap LogicalPlan with something
        // that that can be formatted
        struct Wrapper<'a>(&'a LogicalPlan);
        impl<'a> fmt::Display for Wrapper<'a> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                let with_schema = false;
                let mut visitor = IndentVisitor::new(f, with_schema);
                match self.0.accept(&mut visitor) {
                    Ok(_) => Ok(()),
                    Err(_) => Err(fmt::Error),
                }
            }
        }
        Wrapper(self)
    }

    /// Return a `format`able structure that produces a single line
    /// per node that includes the output schema. For example:
    ///
    /// ```text
    /// Projection: employee.id [id:Int32]\
    ///    Filter: employee.state = Utf8(\"CO\") [id:Int32, state:Utf8]\
    ///      TableScan: employee projection=[0, 3] [id:Int32, state:Utf8]";
    /// ```
    ///
    /// ```
    /// use arrow::datatypes::{Field, Schema, DataType};
    /// use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
    /// let schema = Schema::new(vec![
    ///     Field::new("id", DataType::Int32, false),
    /// ]);
    /// let plan = table_scan(Some("t1"), &schema, None).unwrap()
    ///     .filter(col("id").eq(lit(5))).unwrap()
    ///     .build().unwrap();
    ///
    /// // Format using display_indent_schema
    /// let display_string = format!("{}", plan.display_indent_schema());
    ///
    /// assert_eq!("Filter: t1.id = Int32(5) [id:Int32]\
    ///             \n  TableScan: t1 [id:Int32]",
    ///             display_string);
    /// ```
    pub fn display_indent_schema(&self) -> impl fmt::Display + '_ {
        // Boilerplate structure to wrap LogicalPlan with something
        // that that can be formatted
        struct Wrapper<'a>(&'a LogicalPlan);
        impl<'a> fmt::Display for Wrapper<'a> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                let with_schema = true;
                let mut visitor = IndentVisitor::new(f, with_schema);
                match self.0.accept(&mut visitor) {
                    Ok(_) => Ok(()),
                    Err(_) => Err(fmt::Error),
                }
            }
        }
        Wrapper(self)
    }

    /// Return a `format`able structure that produces lines meant for
    /// graphical display using the `DOT` language. This format can be
    /// visualized using software from
    /// [`graphviz`](https://graphviz.org/)
    ///
    /// This currently produces two graphs -- one with the basic
    /// structure, and one with additional details such as schema.
    ///
    /// ```
    /// use arrow::datatypes::{Field, Schema, DataType};
    /// use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
    /// let schema = Schema::new(vec![
    ///     Field::new("id", DataType::Int32, false),
    /// ]);
    /// let plan = table_scan(Some("t1"), &schema, None).unwrap()
    ///     .filter(col("id").eq(lit(5))).unwrap()
    ///     .build().unwrap();
    ///
    /// // Format using display_graphviz
    /// let graphviz_string = format!("{}", plan.display_graphviz());
    /// ```
    ///
    /// If graphviz string is saved to a file such as `/tmp/example.dot`, the following
    /// commands can be used to render it as a pdf:
    ///
    /// ```bash
    ///   dot -Tpdf < /tmp/example.dot  > /tmp/example.pdf
    /// ```
    ///
    pub fn display_graphviz(&self) -> impl fmt::Display + '_ {
        // Boilerplate structure to wrap LogicalPlan with something
        // that that can be formatted
        struct Wrapper<'a>(&'a LogicalPlan);
        impl<'a> fmt::Display for Wrapper<'a> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                writeln!(
                    f,
                    "// Begin DataFusion GraphViz Plan (see https://graphviz.org)"
                )?;
                writeln!(f, "digraph {{")?;

                let mut visitor = GraphvizVisitor::new(f);

                visitor.pre_visit_plan("LogicalPlan")?;
                self.0.accept(&mut visitor).map_err(|_| fmt::Error)?;
                visitor.post_visit_plan()?;

                visitor.set_with_schema(true);
                visitor.pre_visit_plan("Detailed LogicalPlan")?;
                self.0.accept(&mut visitor).map_err(|_| fmt::Error)?;
                visitor.post_visit_plan()?;

                writeln!(f, "}}")?;
                writeln!(f, "// End DataFusion GraphViz Plan")?;
                Ok(())
            }
        }
        Wrapper(self)
    }

    /// Return a `format`able structure with the a human readable
    /// description of this LogicalPlan node per node, not including
    /// children. For example:
    ///
    /// ```text
    /// Projection: id
    /// ```
    /// ```
    /// use arrow::datatypes::{Field, Schema, DataType};
    /// use datafusion_expr::{lit, col, LogicalPlanBuilder, logical_plan::table_scan};
    /// let schema = Schema::new(vec![
    ///     Field::new("id", DataType::Int32, false),
    /// ]);
    /// let plan = table_scan(Some("t1"), &schema, None).unwrap()
    ///     .build().unwrap();
    ///
    /// // Format using display
    /// let display_string = format!("{}", plan.display());
    ///
    /// assert_eq!("TableScan: t1", display_string);
    /// ```
    pub fn display(&self) -> impl fmt::Display + '_ {
        // Boilerplate structure to wrap LogicalPlan with something
        // that that can be formatted
        struct Wrapper<'a>(&'a LogicalPlan);
        impl<'a> fmt::Display for Wrapper<'a> {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                match self.0 {
                    LogicalPlan::EmptyRelation(_) => write!(f, "EmptyRelation"),
                    LogicalPlan::Values(Values { ref values, .. }) => {
                        let str_values: Vec<_> = values
                            .iter()
                            // limit to only 5 values to avoid horrible display
                            .take(5)
                            .map(|row| {
                                let item = row
                                    .iter()
                                    .map(|expr| expr.to_string())
                                    .collect::<Vec<_>>()
                                    .join(", ");
                                format!("({})", item)
                            })
                            .collect();

                        let elipse = if values.len() > 5 { "..." } else { "" };
                        write!(f, "Values: {}{}", str_values.join(", "), elipse)
                    }

                    LogicalPlan::TableScan(TableScan {
                        ref source,
                        ref table_name,
                        ref projection,
                        ref filters,
                        ref fetch,
                        ..
                    }) => {
                        let projected_fields = match projection {
                            Some(indices) => {
                                let schema = source.schema();
                                let names: Vec<&str> = indices
                                    .iter()
                                    .map(|i| schema.field(*i).name().as_str())
                                    .collect();
                                format!(" projection=[{}]", names.join(", "))
                            }
                            _ => "".to_string(),
                        };

                        write!(f, "TableScan: {}{}", table_name, projected_fields)?;

                        if !filters.is_empty() {
                            let mut full_filter = vec![];
                            let mut partial_filter = vec![];
                            let mut unsupported_filters = vec![];

                            filters.iter().for_each(|x| {
                                if let Ok(t) = source.supports_filter_pushdown(x) {
                                    match t {
                                        TableProviderFilterPushDown::Exact => {
                                            full_filter.push(x)
                                        }
                                        TableProviderFilterPushDown::Inexact => {
                                            partial_filter.push(x)
                                        }
                                        TableProviderFilterPushDown::Unsupported => {
                                            unsupported_filters.push(x)
                                        }
                                    }
                                }
                            });

                            if !full_filter.is_empty() {
                                write!(f, ", full_filters={:?}", full_filter)?;
                            };
                            if !partial_filter.is_empty() {
                                write!(f, ", partial_filters={:?}", partial_filter)?;
                            }
                            if !unsupported_filters.is_empty() {
                                write!(
                                    f,
                                    ", unsupported_filters={:?}",
                                    unsupported_filters
                                )?;
                            }
                        }

                        if let Some(n) = fetch {
                            write!(f, ", fetch={}", n)?;
                        }

                        Ok(())
                    }
                    LogicalPlan::Projection(Projection {
                        ref expr, alias, ..
                    }) => {
                        write!(f, "Projection: ")?;
                        for (i, expr_item) in expr.iter().enumerate() {
                            if i > 0 {
                                write!(f, ", ")?;
                            }
                            write!(f, "{:?}", expr_item)?;
                        }
                        if let Some(a) = alias {
                            write!(f, ", alias={}", a)?;
                        }
                        Ok(())
                    }
                    LogicalPlan::Filter(Filter {
                        predicate: ref expr,
                        ..
                    }) => write!(f, "Filter: {:?}", expr),
                    LogicalPlan::Window(Window {
                        ref window_expr, ..
                    }) => {
                        write!(f, "WindowAggr: windowExpr=[{:?}]", window_expr)
                    }
                    LogicalPlan::Aggregate(Aggregate {
                        ref group_expr,
                        ref aggr_expr,
                        ..
                    }) => write!(
                        f,
                        "Aggregate: groupBy=[{:?}], aggr=[{:?}]",
                        group_expr, aggr_expr
                    ),
                    LogicalPlan::Sort(Sort { expr, fetch, .. }) => {
                        write!(f, "Sort: ")?;
                        for (i, expr_item) in expr.iter().enumerate() {
                            if i > 0 {
                                write!(f, ", ")?;
                            }
                            write!(f, "{:?}", expr_item)?;
                        }
                        if let Some(a) = fetch {
                            write!(f, ", fetch={}", a)?;
                        }

                        Ok(())
                    }
                    LogicalPlan::Join(Join {
                        on: ref keys,
                        filter,
                        join_constraint,
                        join_type,
                        ..
                    }) => {
                        let join_expr: Vec<String> =
                            keys.iter().map(|(l, r)| format!("{} = {}", l, r)).collect();
                        let filter_expr = filter
                            .as_ref()
                            .map(|expr| format!(" Filter: {}", expr))
                            .unwrap_or_else(|| "".to_string());
                        match join_constraint {
                            JoinConstraint::On => {
                                write!(
                                    f,
                                    "{} Join: {}{}",
                                    join_type,
                                    join_expr.join(", "),
                                    filter_expr
                                )
                            }
                            JoinConstraint::Using => {
                                write!(
                                    f,
                                    "{} Join: Using {}{}",
                                    join_type,
                                    join_expr.join(", "),
                                    filter_expr,
                                )
                            }
                        }
                    }
                    LogicalPlan::CrossJoin(_) => {
                        write!(f, "CrossJoin:")
                    }
                    LogicalPlan::Repartition(Repartition {
                        partitioning_scheme,
                        ..
                    }) => match partitioning_scheme {
                        Partitioning::RoundRobinBatch(n) => write!(
                            f,
                            "Repartition: RoundRobinBatch partition_count={}",
                            n
                        ),
                        Partitioning::Hash(expr, n) => {
                            let hash_expr: Vec<String> =
                                expr.iter().map(|e| format!("{:?}", e)).collect();
                            write!(
                                f,
                                "Repartition: Hash({}) partition_count={}",
                                hash_expr.join(", "),
                                n
                            )
                        }
                        Partitioning::DistributeBy(expr) => {
                            let dist_by_expr: Vec<String> =
                                expr.iter().map(|e| format!("{:?}", e)).collect();
                            write!(
                                f,
                                "Repartition: DistributeBy({})",
                                dist_by_expr.join(", "),
                            )
                        }
                    },
                    LogicalPlan::Limit(Limit {
                        ref skip,
                        ref fetch,
                        ..
                    }) => {
                        write!(
                            f,
                            "Limit: skip={}, fetch={}",
                            skip,
                            fetch.map_or_else(|| "None".to_string(), |x| x.to_string())
                        )
                    }
                    LogicalPlan::Subquery(Subquery { .. }) => {
                        write!(f, "Subquery:")
                    }
                    LogicalPlan::SubqueryAlias(SubqueryAlias { ref alias, .. }) => {
                        write!(f, "SubqueryAlias: {}", alias)
                    }
                    LogicalPlan::CreateExternalTable(CreateExternalTable {
                        ref name,
                        ..
                    }) => {
                        write!(f, "CreateExternalTable: {:?}", name)
                    }
                    LogicalPlan::CreateMemoryTable(CreateMemoryTable {
                        name, ..
                    }) => {
                        write!(f, "CreateMemoryTable: {:?}", name)
                    }
                    LogicalPlan::CreateView(CreateView { name, .. }) => {
                        write!(f, "CreateView: {:?}", name)
                    }
                    LogicalPlan::CreateCatalogSchema(CreateCatalogSchema {
                        schema_name,
                        ..
                    }) => {
                        write!(f, "CreateCatalogSchema: {:?}", schema_name)
                    }
                    LogicalPlan::CreateCatalog(CreateCatalog {
                        catalog_name, ..
                    }) => {
                        write!(f, "CreateCatalog: {:?}", catalog_name)
                    }
                    LogicalPlan::DropTable(DropTable {
                        name, if_exists, ..
                    }) => {
                        write!(f, "DropTable: {:?} if not exist:={}", name, if_exists)
                    }
                    LogicalPlan::DropView(DropView {
                        name, if_exists, ..
                    }) => {
                        write!(f, "DropView: {:?} if not exist:={}", name, if_exists)
                    }
                    LogicalPlan::Distinct(Distinct { .. }) => {
                        write!(f, "Distinct:")
                    }
                    LogicalPlan::Explain { .. } => write!(f, "Explain"),
                    LogicalPlan::Analyze { .. } => write!(f, "Analyze"),
                    LogicalPlan::Union(_) => write!(f, "Union"),
                    LogicalPlan::Extension(e) => e.node.fmt_for_explain(f),
                }
            }
        }
        Wrapper(self)
    }
}

impl fmt::Debug for LogicalPlan {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.display_indent().fmt(f)
    }
}

impl ToStringifiedPlan for LogicalPlan {
    fn to_stringified(&self, plan_type: PlanType) -> StringifiedPlan {
        StringifiedPlan::new(plan_type, self.display_indent().to_string())
    }
}

/// Join type
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum JoinType {
    /// Inner Join
    Inner,
    /// Left Join
    Left,
    /// Right Join
    Right,
    /// Full Join
    Full,
    /// Semi Join
    Semi,
    /// Anti Join
    Anti,
}

impl Display for JoinType {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let join_type = match self {
            JoinType::Inner => "Inner",
            JoinType::Left => "Left",
            JoinType::Right => "Right",
            JoinType::Full => "Full",
            JoinType::Semi => "Semi",
            JoinType::Anti => "Anti",
        };
        write!(f, "{}", join_type)
    }
}

/// Join constraint
#[derive(Debug, Clone, Copy)]
pub enum JoinConstraint {
    /// Join ON
    On,
    /// Join USING
    Using,
}

/// Creates a catalog (aka "Database").
#[derive(Clone)]
pub struct CreateCatalog {
    /// The catalog name
    pub catalog_name: String,
    /// Do nothing (except issuing a notice) if a schema with the same name already exists
    pub if_not_exists: bool,
    /// Empty schema
    pub schema: DFSchemaRef,
}

/// Creates a schema.
#[derive(Clone)]
pub struct CreateCatalogSchema {
    /// The table schema
    pub schema_name: String,
    /// Do nothing (except issuing a notice) if a schema with the same name already exists
    pub if_not_exists: bool,
    /// Empty schema
    pub schema: DFSchemaRef,
}

/// Drops a table.
#[derive(Clone)]
pub struct DropTable {
    /// The table name
    pub name: String,
    /// If the table exists
    pub if_exists: bool,
    /// Dummy schema
    pub schema: DFSchemaRef,
}

/// Drops a view.
#[derive(Clone)]
pub struct DropView {
    /// The view name
    pub name: String,
    /// If the view exists
    pub if_exists: bool,
    /// Dummy schema
    pub schema: DFSchemaRef,
}

/// Produces no rows: An empty relation with an empty schema
#[derive(Clone)]
pub struct EmptyRelation {
    /// Whether to produce a placeholder row
    pub produce_one_row: bool,
    /// The schema description of the output
    pub schema: DFSchemaRef,
}

/// Values expression. See
/// [Postgres VALUES](https://www.postgresql.org/docs/current/queries-values.html)
/// documentation for more details.
#[derive(Clone)]
pub struct Values {
    /// The table schema
    pub schema: DFSchemaRef,
    /// Values
    pub values: Vec<Vec<Expr>>,
}

/// Evaluates an arbitrary list of expressions (essentially a
/// SELECT with an expression list) on its input.
#[derive(Clone)]
pub struct Projection {
    /// The list of expressions
    pub expr: Vec<Expr>,
    /// The incoming logical plan
    pub input: Arc<LogicalPlan>,
    /// The schema description of the output
    pub schema: DFSchemaRef,
    /// Projection output relation alias
    pub alias: Option<String>,
}

impl Projection {
    /// Create a new Projection
    pub fn try_new(
        expr: Vec<Expr>,
        input: Arc<LogicalPlan>,
        alias: Option<String>,
    ) -> Result<Self, DataFusionError> {
        let schema = Arc::new(DFSchema::new_with_metadata(
            exprlist_to_fields(&expr, &input)?,
            input.schema().metadata().clone(),
        )?);
        Self::try_new_with_schema(expr, input, schema, alias)
    }

    /// Create a new Projection using the specified output schema
    pub fn try_new_with_schema(
        expr: Vec<Expr>,
        input: Arc<LogicalPlan>,
        schema: DFSchemaRef,
        alias: Option<String>,
    ) -> Result<Self, DataFusionError> {
        if expr.len() != schema.fields().len() {
            return Err(DataFusionError::Plan(format!("Projection has mismatch between number of expressions ({}) and number of fields in schema ({})", expr.len(), schema.fields().len())));
        }
        Ok(Self {
            expr,
            input,
            schema,
            alias,
        })
    }

    pub fn try_from_plan(plan: &LogicalPlan) -> datafusion_common::Result<&Projection> {
        match plan {
            LogicalPlan::Projection(it) => Ok(it),
            _ => plan_err!("Could not coerce into Projection!"),
        }
    }
}

/// Aliased subquery
#[derive(Clone)]
pub struct SubqueryAlias {
    /// The incoming logical plan
    pub input: Arc<LogicalPlan>,
    /// The alias for the input relation
    pub alias: String,
    /// The schema with qualified field names
    pub schema: DFSchemaRef,
}

/// Filters rows from its input that do not match an
/// expression (essentially a WHERE clause with a predicate
/// expression).
///
/// Semantically, `<predicate>` is evaluated for each row of the input;
/// If the value of `<predicate>` is true, the input row is passed to
/// the output. If the value of `<predicate>` is false, the row is
/// discarded.
#[derive(Clone)]
pub struct Filter {
    /// The predicate expression, which must have Boolean type.
    pub predicate: Expr,
    /// The incoming logical plan
    pub input: Arc<LogicalPlan>,
}

impl Filter {
    pub fn try_from_plan(plan: &LogicalPlan) -> datafusion_common::Result<&Filter> {
        match plan {
            LogicalPlan::Filter(it) => Ok(it),
            _ => plan_err!("Could not coerce into Filter!"),
        }
    }
}

/// Window its input based on a set of window spec and window function (e.g. SUM or RANK)
#[derive(Clone)]
pub struct Window {
    /// The incoming logical plan
    pub input: Arc<LogicalPlan>,
    /// The window function expression
    pub window_expr: Vec<Expr>,
    /// The schema description of the window output
    pub schema: DFSchemaRef,
}

/// Produces rows from a table provider by reference or from the context
#[derive(Clone)]
pub struct TableScan {
    /// The name of the table
    pub table_name: String,
    /// The source of the table
    pub source: Arc<dyn TableSource>,
    /// Optional column indices to use as a projection
    pub projection: Option<Vec<usize>>,
    /// The schema description of the output
    pub projected_schema: DFSchemaRef,
    /// Optional expressions to be used as filters by the table provider
    pub filters: Vec<Expr>,
    /// Optional number of rows to read
    pub fetch: Option<usize>,
}

/// Apply Cross Join to two logical plans
#[derive(Clone)]
pub struct CrossJoin {
    /// Left input
    pub left: Arc<LogicalPlan>,
    /// Right input
    pub right: Arc<LogicalPlan>,
    /// The output schema, containing fields from the left and right inputs
    pub schema: DFSchemaRef,
}

/// Repartition the plan based on a partitioning scheme.
#[derive(Clone)]
pub struct Repartition {
    /// The incoming logical plan
    pub input: Arc<LogicalPlan>,
    /// The partitioning scheme
    pub partitioning_scheme: Partitioning,
}

/// Union multiple inputs
#[derive(Clone)]
pub struct Union {
    /// Inputs to merge
    pub inputs: Vec<Arc<LogicalPlan>>,
    /// Union schema. Should be the same for all inputs.
    pub schema: DFSchemaRef,
    /// Union output relation alias
    pub alias: Option<String>,
}

/// Creates an in memory table.
#[derive(Clone)]
pub struct CreateMemoryTable {
    /// The table name
    pub name: String,
    /// The logical plan
    pub input: Arc<LogicalPlan>,
    /// Option to not error if table already exists
    pub if_not_exists: bool,
    /// Option to replace table content if table already exists
    pub or_replace: bool,
}

/// Creates a view.
#[derive(Clone)]
pub struct CreateView {
    /// The table name
    pub name: String,
    /// The logical plan
    pub input: Arc<LogicalPlan>,
    /// Option to not error if table already exists
    pub or_replace: bool,
    /// SQL used to create the view, if available
    pub definition: Option<String>,
}

/// Creates an external table.
#[derive(Clone)]
pub struct CreateExternalTable {
    /// The table schema
    pub schema: DFSchemaRef,
    /// The table name
    pub name: String,
    /// The physical location
    pub location: String,
    /// The file type of physical file
    pub file_type: String,
    /// Whether the CSV file contains a header
    pub has_header: bool,
    /// Delimiter for CSV
    pub delimiter: char,
    /// Partition Columns
    pub table_partition_cols: Vec<String>,
    /// Option to not error if table already exists
    pub if_not_exists: bool,
    /// SQL used to create the table, if available
    pub definition: Option<String>,
}

/// Produces a relation with string representations of
/// various parts of the plan
#[derive(Clone)]
pub struct Explain {
    /// Should extra (detailed, intermediate plans) be included?
    pub verbose: bool,
    /// The logical plan that is being EXPLAIN'd
    pub plan: Arc<LogicalPlan>,
    /// Represent the various stages plans have gone through
    pub stringified_plans: Vec<StringifiedPlan>,
    /// The output schema of the explain (2 columns of text)
    pub schema: DFSchemaRef,
}

/// Runs the actual plan, and then prints the physical plan with
/// with execution metrics.
#[derive(Clone)]
pub struct Analyze {
    /// Should extra detail be included?
    pub verbose: bool,
    /// The logical plan that is being EXPLAIN ANALYZE'd
    pub input: Arc<LogicalPlan>,
    /// The output schema of the explain (2 columns of text)
    pub schema: DFSchemaRef,
}

/// Extension operator defined outside of DataFusion
#[derive(Clone)]
pub struct Extension {
    /// The runtime extension operator
    pub node: Arc<dyn UserDefinedLogicalNode>,
}

/// Produces the first `n` tuples from its input and discards the rest.
#[derive(Clone)]
pub struct Limit {
    /// Number of rows to skip before fetch
    pub skip: usize,
    /// Maximum number of rows to fetch,
    /// None means fetching all rows
    pub fetch: Option<usize>,
    /// The logical plan
    pub input: Arc<LogicalPlan>,
}

/// Removes duplicate rows from the input
#[derive(Clone)]
pub struct Distinct {
    /// The logical plan that is being DISTINCT'd
    pub input: Arc<LogicalPlan>,
}

/// Aggregates its input based on a set of grouping and aggregate
/// expressions (e.g. SUM).
#[derive(Clone)]
pub struct Aggregate {
    /// The incoming logical plan
    pub input: Arc<LogicalPlan>,
    /// Grouping expressions
    pub group_expr: Vec<Expr>,
    /// Aggregate expressions
    pub aggr_expr: Vec<Expr>,
    /// The schema description of the aggregate output
    pub schema: DFSchemaRef,
}

impl Aggregate {
    /// Create a new aggregate operator.
    pub fn try_new(
        input: Arc<LogicalPlan>,
        group_expr: Vec<Expr>,
        aggr_expr: Vec<Expr>,
    ) -> datafusion_common::Result<Self> {
        let grouping_expr: Vec<Expr> = grouping_set_to_exprlist(group_expr.as_slice())?;
        let all_expr = grouping_expr.iter().chain(aggr_expr.iter());
        validate_unique_names("Aggregations", all_expr.clone())?;
        let schema = DFSchema::new_with_metadata(
            exprlist_to_fields(all_expr, &input)?,
            input.schema().metadata().clone(),
        )?;
        Self::try_new_with_schema(input, group_expr, aggr_expr, Arc::new(schema))
    }

    /// Create a new aggregate operator using the provided schema to avoid the overhead of
    /// building the schema again when the schema is already known.
    ///
    /// This method should only be called when you are absolutely sure that the schema being
    /// provided is correct for the aggregate. If in doubt, call [try_new] instead.
    pub fn try_new_with_schema(
        input: Arc<LogicalPlan>,
        group_expr: Vec<Expr>,
        aggr_expr: Vec<Expr>,
        schema: DFSchemaRef,
    ) -> datafusion_common::Result<Self> {
        if group_expr.is_empty() && aggr_expr.is_empty() {
            return Err(DataFusionError::Plan(
                "Aggregate requires at least one grouping or aggregate expression"
                    .to_string(),
            ));
        }
        let group_expr_count = grouping_set_expr_count(&group_expr)?;
        if schema.fields().len() != group_expr_count + aggr_expr.len() {
            return Err(DataFusionError::Plan(format!(
                "Aggregate schema has wrong number of fields. Expected {} got {}",
                group_expr_count + aggr_expr.len(),
                schema.fields().len()
            )));
        }
        Ok(Self {
            input,
            group_expr,
            aggr_expr,
            schema,
        })
    }

    pub fn try_from_plan(plan: &LogicalPlan) -> datafusion_common::Result<&Aggregate> {
        match plan {
            LogicalPlan::Aggregate(it) => Ok(it),
            _ => plan_err!("Could not coerce into Aggregate!"),
        }
    }
}

/// Sorts its input according to a list of sort expressions.
#[derive(Clone)]
pub struct Sort {
    /// The sort expressions
    pub expr: Vec<Expr>,
    /// The incoming logical plan
    pub input: Arc<LogicalPlan>,
    /// Optional fetch limit
    pub fetch: Option<usize>,
}

/// Join two logical plans on one or more join columns
#[derive(Clone)]
pub struct Join {
    /// Left input
    pub left: Arc<LogicalPlan>,
    /// Right input
    pub right: Arc<LogicalPlan>,
    /// Equijoin clause expressed as pairs of (left, right) join columns
    pub on: Vec<(Column, Column)>,
    /// Filters applied during join (non-equi conditions)
    pub filter: Option<Expr>,
    /// Join type
    pub join_type: JoinType,
    /// Join constraint
    pub join_constraint: JoinConstraint,
    /// The output schema, containing fields from the left and right inputs
    pub schema: DFSchemaRef,
    /// If null_equals_null is true, null == null else null != null
    pub null_equals_null: bool,
}

/// Subquery
#[derive(Clone)]
pub struct Subquery {
    /// The subquery
    pub subquery: Arc<LogicalPlan>,
}

impl Subquery {
    pub fn new(plan: LogicalPlan) -> Self {
        Subquery {
            subquery: Arc::new(plan),
        }
    }
    pub fn try_from_expr(plan: &Expr) -> datafusion_common::Result<&Subquery> {
        match plan {
            Expr::ScalarSubquery(it) => Ok(it),
            _ => plan_err!("Could not coerce into ScalarSubquery!"),
        }
    }
}

impl Debug for Subquery {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "<subquery>")
    }
}

impl Hash for Subquery {
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.finish();
    }

    fn hash_slice<H: Hasher>(_data: &[Self], state: &mut H)
    where
        Self: Sized,
    {
        state.finish();
    }
}

impl PartialEq for Subquery {
    fn eq(&self, _other: &Self) -> bool {
        false
    }
}

impl Eq for Subquery {}

/// Logical partitioning schemes supported by the repartition operator.
#[derive(Debug, Clone)]
pub enum Partitioning {
    /// Allocate batches using a round-robin algorithm and the specified number of partitions
    RoundRobinBatch(usize),
    /// Allocate rows based on a hash of one of more expressions and the specified number
    /// of partitions.
    Hash(Vec<Expr>, usize),
    /// The DISTRIBUTE BY clause is used to repartition the data based on the input expressions
    DistributeBy(Vec<Expr>),
}

/// Represents which type of plan, when storing multiple
/// for use in EXPLAIN plans
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum PlanType {
    /// The initial LogicalPlan provided to DataFusion
    InitialLogicalPlan,
    /// The LogicalPlan which results from applying an optimizer pass
    OptimizedLogicalPlan {
        /// The name of the optimizer which produced this plan
        optimizer_name: String,
    },
    /// The final, fully optimized LogicalPlan that was converted to a physical plan
    FinalLogicalPlan,
    /// The initial physical plan, prepared for execution
    InitialPhysicalPlan,
    /// The ExecutionPlan which results from applying an optimizer pass
    OptimizedPhysicalPlan {
        /// The name of the optimizer which produced this plan
        optimizer_name: String,
    },
    /// The final, fully optimized physical which would be executed
    FinalPhysicalPlan,
}

impl fmt::Display for PlanType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            PlanType::InitialLogicalPlan => write!(f, "initial_logical_plan"),
            PlanType::OptimizedLogicalPlan { optimizer_name } => {
                write!(f, "logical_plan after {}", optimizer_name)
            }
            PlanType::FinalLogicalPlan => write!(f, "logical_plan"),
            PlanType::InitialPhysicalPlan => write!(f, "initial_physical_plan"),
            PlanType::OptimizedPhysicalPlan { optimizer_name } => {
                write!(f, "physical_plan after {}", optimizer_name)
            }
            PlanType::FinalPhysicalPlan => write!(f, "physical_plan"),
        }
    }
}

/// Represents some sort of execution plan, in String form
#[derive(Debug, Clone, PartialEq, Eq)]
#[allow(clippy::rc_buffer)]
pub struct StringifiedPlan {
    /// An identifier of what type of plan this string represents
    pub plan_type: PlanType,
    /// The string representation of the plan
    pub plan: Arc<String>,
}

impl StringifiedPlan {
    /// Create a new Stringified plan of `plan_type` with string
    /// representation `plan`
    pub fn new(plan_type: PlanType, plan: impl Into<String>) -> Self {
        StringifiedPlan {
            plan_type,
            plan: Arc::new(plan.into()),
        }
    }

    /// returns true if this plan should be displayed. Generally
    /// `verbose_mode = true` will display all available plans
    pub fn should_display(&self, verbose_mode: bool) -> bool {
        match self.plan_type {
            PlanType::FinalLogicalPlan | PlanType::FinalPhysicalPlan => true,
            _ => verbose_mode,
        }
    }
}

/// Trait for something that can be formatted as a stringified plan
pub trait ToStringifiedPlan {
    /// Create a stringified plan with the specified type
    fn to_stringified(&self, plan_type: PlanType) -> StringifiedPlan;
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::logical_plan::table_scan;
    use crate::{col, in_subquery, lit};
    use arrow::datatypes::{DataType, Field, Schema};
    use datafusion_common::DFSchema;
    use datafusion_common::Result;
    use std::collections::HashMap;

    fn employee_schema() -> Schema {
        Schema::new(vec![
            Field::new("id", DataType::Int32, false),
            Field::new("first_name", DataType::Utf8, false),
            Field::new("last_name", DataType::Utf8, false),
            Field::new("state", DataType::Utf8, false),
            Field::new("salary", DataType::Int32, false),
        ])
    }

    fn display_plan() -> Result<LogicalPlan> {
        let plan1 = table_scan(Some("employee_csv"), &employee_schema(), Some(vec![3]))?
            .build()?;

        table_scan(Some("employee_csv"), &employee_schema(), Some(vec![0, 3]))?
            .filter(in_subquery(col("state"), Arc::new(plan1)))?
            .project(vec![col("id")])?
            .build()
    }

    #[test]
    fn test_display_indent() -> Result<()> {
        let plan = display_plan()?;

        let expected = "Projection: employee_csv.id\
        \n  Filter: employee_csv.state IN (<subquery>)\
        \n    Subquery:\
        \n      TableScan: employee_csv projection=[state]\
        \n    TableScan: employee_csv projection=[id, state]";

        assert_eq!(expected, format!("{}", plan.display_indent()));
        Ok(())
    }

    #[test]
    fn test_display_indent_schema() -> Result<()> {
        let plan = display_plan()?;

        let expected = "Projection: employee_csv.id [id:Int32]\
        \n  Filter: employee_csv.state IN (<subquery>) [id:Int32, state:Utf8]\
        \n    Subquery: [state:Utf8]\
        \n      TableScan: employee_csv projection=[state] [state:Utf8]\
        \n    TableScan: employee_csv projection=[id, state] [id:Int32, state:Utf8]";

        assert_eq!(expected, format!("{}", plan.display_indent_schema()));
        Ok(())
    }

    #[test]
    fn test_display_graphviz() -> Result<()> {
        let plan = display_plan()?;

        // just test for a few key lines in the output rather than the
        // whole thing to make test mainteance easier.
        let graphviz = format!("{}", plan.display_graphviz());

        assert!(
            graphviz.contains(
                r#"// Begin DataFusion GraphViz Plan (see https://graphviz.org)"#
            ),
            "\n{}",
            plan.display_graphviz()
        );
        assert!(
            graphviz.contains(
                r#"[shape=box label="TableScan: employee_csv projection=[id, state]"]"#
            ),
            "\n{}",
            plan.display_graphviz()
        );
        assert!(graphviz.contains(r#"[shape=box label="TableScan: employee_csv projection=[id, state]\nSchema: [id:Int32, state:Utf8]"]"#),
                "\n{}", plan.display_graphviz());
        assert!(
            graphviz.contains(r#"// End DataFusion GraphViz Plan"#),
            "\n{}",
            plan.display_graphviz()
        );
        Ok(())
    }

    /// Tests for the Visitor trait and walking logical plan nodes
    #[derive(Debug, Default)]
    struct OkVisitor {
        strings: Vec<String>,
    }

    impl PlanVisitor for OkVisitor {
        type Error = String;

        fn pre_visit(
            &mut self,
            plan: &LogicalPlan,
        ) -> std::result::Result<bool, Self::Error> {
            let s = match plan {
                LogicalPlan::Projection { .. } => "pre_visit Projection",
                LogicalPlan::Filter { .. } => "pre_visit Filter",
                LogicalPlan::TableScan { .. } => "pre_visit TableScan",
                _ => unimplemented!("unknown plan type"),
            };

            self.strings.push(s.into());
            Ok(true)
        }

        fn post_visit(
            &mut self,
            plan: &LogicalPlan,
        ) -> std::result::Result<bool, Self::Error> {
            let s = match plan {
                LogicalPlan::Projection { .. } => "post_visit Projection",
                LogicalPlan::Filter { .. } => "post_visit Filter",
                LogicalPlan::TableScan { .. } => "post_visit TableScan",
                _ => unimplemented!("unknown plan type"),
            };

            self.strings.push(s.into());
            Ok(true)
        }
    }

    #[test]
    fn visit_order() {
        let mut visitor = OkVisitor::default();
        let plan = test_plan();
        let res = plan.accept(&mut visitor);
        assert!(res.is_ok());

        assert_eq!(
            visitor.strings,
            vec![
                "pre_visit Projection",
                "pre_visit Filter",
                "pre_visit TableScan",
                "post_visit TableScan",
                "post_visit Filter",
                "post_visit Projection",
            ]
        );
    }

    #[derive(Debug, Default)]
    /// Counter than counts to zero and returns true when it gets there
    struct OptionalCounter {
        val: Option<usize>,
    }

    impl OptionalCounter {
        fn new(val: usize) -> Self {
            Self { val: Some(val) }
        }
        // Decrements the counter by 1, if any, returning true if it hits zero
        fn dec(&mut self) -> bool {
            if Some(0) == self.val {
                true
            } else {
                self.val = self.val.take().map(|i| i - 1);
                false
            }
        }
    }

    #[derive(Debug, Default)]
    /// Visitor that returns false after some number of visits
    struct StoppingVisitor {
        inner: OkVisitor,
        /// When Some(0) returns false from pre_visit
        return_false_from_pre_in: OptionalCounter,
        /// When Some(0) returns false from post_visit
        return_false_from_post_in: OptionalCounter,
    }

    impl PlanVisitor for StoppingVisitor {
        type Error = String;

        fn pre_visit(
            &mut self,
            plan: &LogicalPlan,
        ) -> std::result::Result<bool, Self::Error> {
            if self.return_false_from_pre_in.dec() {
                return Ok(false);
            }
            self.inner.pre_visit(plan)
        }

        fn post_visit(
            &mut self,
            plan: &LogicalPlan,
        ) -> std::result::Result<bool, Self::Error> {
            if self.return_false_from_post_in.dec() {
                return Ok(false);
            }

            self.inner.post_visit(plan)
        }
    }

    /// test early stopping in pre-visit
    #[test]
    fn early_stopping_pre_visit() {
        let mut visitor = StoppingVisitor {
            return_false_from_pre_in: OptionalCounter::new(2),
            ..Default::default()
        };
        let plan = test_plan();
        let res = plan.accept(&mut visitor);
        assert!(res.is_ok());

        assert_eq!(
            visitor.inner.strings,
            vec!["pre_visit Projection", "pre_visit Filter"]
        );
    }

    #[test]
    fn early_stopping_post_visit() {
        let mut visitor = StoppingVisitor {
            return_false_from_post_in: OptionalCounter::new(1),
            ..Default::default()
        };
        let plan = test_plan();
        let res = plan.accept(&mut visitor);
        assert!(res.is_ok());

        assert_eq!(
            visitor.inner.strings,
            vec![
                "pre_visit Projection",
                "pre_visit Filter",
                "pre_visit TableScan",
                "post_visit TableScan",
            ]
        );
    }

    #[derive(Debug, Default)]
    /// Visitor that returns an error after some number of visits
    struct ErrorVisitor {
        inner: OkVisitor,
        /// When Some(0) returns false from pre_visit
        return_error_from_pre_in: OptionalCounter,
        /// When Some(0) returns false from post_visit
        return_error_from_post_in: OptionalCounter,
    }

    impl PlanVisitor for ErrorVisitor {
        type Error = String;

        fn pre_visit(
            &mut self,
            plan: &LogicalPlan,
        ) -> std::result::Result<bool, Self::Error> {
            if self.return_error_from_pre_in.dec() {
                return Err("Error in pre_visit".into());
            }

            self.inner.pre_visit(plan)
        }

        fn post_visit(
            &mut self,
            plan: &LogicalPlan,
        ) -> std::result::Result<bool, Self::Error> {
            if self.return_error_from_post_in.dec() {
                return Err("Error in post_visit".into());
            }

            self.inner.post_visit(plan)
        }
    }

    #[test]
    fn error_pre_visit() {
        let mut visitor = ErrorVisitor {
            return_error_from_pre_in: OptionalCounter::new(2),
            ..Default::default()
        };
        let plan = test_plan();
        let res = plan.accept(&mut visitor);

        if let Err(e) = res {
            assert_eq!("Error in pre_visit", e);
        } else {
            panic!("Expected an error");
        }

        assert_eq!(
            visitor.inner.strings,
            vec!["pre_visit Projection", "pre_visit Filter"]
        );
    }

    #[test]
    fn error_post_visit() {
        let mut visitor = ErrorVisitor {
            return_error_from_post_in: OptionalCounter::new(1),
            ..Default::default()
        };
        let plan = test_plan();
        let res = plan.accept(&mut visitor);
        if let Err(e) = res {
            assert_eq!("Error in post_visit", e);
        } else {
            panic!("Expected an error");
        }

        assert_eq!(
            visitor.inner.strings,
            vec![
                "pre_visit Projection",
                "pre_visit Filter",
                "pre_visit TableScan",
                "post_visit TableScan",
            ]
        );
    }

    #[test]
    fn projection_expr_schema_mismatch() -> Result<()> {
        let empty_schema = Arc::new(DFSchema::new_with_metadata(vec![], HashMap::new())?);
        let p = Projection::try_new_with_schema(
            vec![col("a")],
            Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
                produce_one_row: false,
                schema: empty_schema.clone(),
            })),
            empty_schema,
            None,
        );
        assert_eq!("Error during planning: Projection has mismatch between number of expressions (1) and number of fields in schema (0)", format!("{}", p.err().unwrap()));
        Ok(())
    }

    fn test_plan() -> LogicalPlan {
        let schema = Schema::new(vec![
            Field::new("id", DataType::Int32, false),
            Field::new("state", DataType::Utf8, false),
        ]);

        table_scan(None, &schema, Some(vec![0, 1]))
            .unwrap()
            .filter(col("state").eq(lit("CO")))
            .unwrap()
            .project(vec![col("id")])
            .unwrap()
            .build()
            .unwrap()
    }
}