datafusion_datasource/table_schema.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! Helper struct to manage table schemas with partition columns
19
20use arrow::datatypes::{FieldRef, SchemaBuilder, SchemaRef};
21use std::sync::Arc;
22
23/// Helper to hold table schema information for partitioned data sources.
24///
25/// When reading partitioned data (such as Hive-style partitioning), a table's schema
26/// consists of two parts:
27/// 1. **File schema**: The schema of the actual data files on disk
28/// 2. **Partition columns**: Columns that are encoded in the directory structure,
29/// not stored in the files themselves
30///
31/// # Example: Partitioned Table
32///
33/// Consider a table with the following directory structure:
34/// ```text
35/// /data/date=2025-10-10/region=us-west/data.parquet
36/// /data/date=2025-10-11/region=us-east/data.parquet
37/// ```
38///
39/// In this case:
40/// - **File schema**: The schema of `data.parquet` files (e.g., `[user_id, amount]`)
41/// - **Partition columns**: `[date, region]` extracted from the directory path
42/// - **Table schema**: The full schema combining both (e.g., `[user_id, amount, date, region]`)
43///
44/// # When to Use
45///
46/// Use `TableSchema` when:
47/// - Reading partitioned data sources (Parquet, CSV, etc. with Hive-style partitioning)
48/// - You need to efficiently access different schema representations without reconstructing them
49/// - You want to avoid repeatedly concatenating file and partition schemas
50///
51/// For non-partitioned data or when working with a single schema representation,
52/// working directly with Arrow's `Schema` or `SchemaRef` is simpler.
53///
54/// # Performance
55///
56/// This struct pre-computes and caches the full table schema, allowing cheap references
57/// to any representation without repeated allocations or reconstructions.
58#[derive(Debug, Clone)]
59pub struct TableSchema {
60 /// The schema of the data files themselves, without partition columns.
61 ///
62 /// For example, if your Parquet files contain `[user_id, amount]`,
63 /// this field holds that schema.
64 file_schema: SchemaRef,
65
66 /// Columns that are derived from the directory structure (partitioning scheme).
67 ///
68 /// For Hive-style partitioning like `/date=2025-10-10/region=us-west/`,
69 /// this contains the `date` and `region` fields.
70 ///
71 /// These columns are NOT present in the data files but are appended to each
72 /// row during query execution based on the file's location.
73 table_partition_cols: Arc<Vec<FieldRef>>,
74
75 /// The complete table schema: file_schema columns followed by partition columns.
76 ///
77 /// This is pre-computed during construction by concatenating `file_schema`
78 /// and `table_partition_cols`, so it can be returned as a cheap reference.
79 table_schema: SchemaRef,
80}
81
82impl TableSchema {
83 /// Create a new TableSchema from a file schema and partition columns.
84 ///
85 /// The table schema is automatically computed by appending the partition columns
86 /// to the file schema.
87 ///
88 /// You should prefer calling this method over
89 /// chaining [`TableSchema::from_file_schema`] and [`TableSchema::with_table_partition_cols`]
90 /// if you have both the file schema and partition columns available at construction time
91 /// since it avoids re-computing the table schema.
92 ///
93 /// # Arguments
94 ///
95 /// * `file_schema` - Schema of the data files (without partition columns)
96 /// * `table_partition_cols` - Partition columns to append to each row
97 ///
98 /// # Example
99 ///
100 /// ```
101 /// # use std::sync::Arc;
102 /// # use arrow::datatypes::{Schema, Field, DataType};
103 /// # use datafusion_datasource::TableSchema;
104 /// let file_schema = Arc::new(Schema::new(vec![
105 /// Field::new("user_id", DataType::Int64, false),
106 /// Field::new("amount", DataType::Float64, false),
107 /// ]));
108 ///
109 /// let partition_cols = vec![
110 /// Arc::new(Field::new("date", DataType::Utf8, false)),
111 /// Arc::new(Field::new("region", DataType::Utf8, false)),
112 /// ];
113 ///
114 /// let table_schema = TableSchema::new(file_schema, partition_cols);
115 ///
116 /// // Table schema will have 4 columns: user_id, amount, date, region
117 /// assert_eq!(table_schema.table_schema().fields().len(), 4);
118 /// ```
119 pub fn new(file_schema: SchemaRef, table_partition_cols: Vec<FieldRef>) -> Self {
120 let mut builder = SchemaBuilder::from(file_schema.as_ref());
121 builder.extend(table_partition_cols.iter().cloned());
122 Self {
123 file_schema,
124 table_partition_cols: Arc::new(table_partition_cols),
125 table_schema: Arc::new(builder.finish()),
126 }
127 }
128
129 /// Create a new TableSchema with no partition columns.
130 ///
131 /// You should prefer calling [`TableSchema::new`] if you have partition columns at
132 /// construction time since it avoids re-computing the table schema.
133 pub fn from_file_schema(file_schema: SchemaRef) -> Self {
134 Self::new(file_schema, vec![])
135 }
136
137 /// Add partition columns to an existing TableSchema, returning a new instance.
138 ///
139 /// You should prefer calling [`TableSchema::new`] instead of chaining [`TableSchema::from_file_schema`]
140 /// into [`TableSchema::with_table_partition_cols`] if you have partition columns at construction time
141 /// since it avoids re-computing the table schema.
142 pub fn with_table_partition_cols(mut self, partition_cols: Vec<FieldRef>) -> Self {
143 if self.table_partition_cols.is_empty() {
144 self.table_partition_cols = Arc::new(partition_cols);
145 } else {
146 // Append to existing partition columns
147 let table_partition_cols = Arc::get_mut(&mut self.table_partition_cols).expect(
148 "Expected to be the sole owner of table_partition_cols since this function accepts mut self",
149 );
150 table_partition_cols.extend(partition_cols);
151 }
152 let mut builder = SchemaBuilder::from(self.file_schema.as_ref());
153 builder.extend(self.table_partition_cols.iter().cloned());
154 self.table_schema = Arc::new(builder.finish());
155 self
156 }
157
158 /// Get the file schema (without partition columns).
159 ///
160 /// This is the schema of the actual data files on disk.
161 pub fn file_schema(&self) -> &SchemaRef {
162 &self.file_schema
163 }
164
165 /// Get the table partition columns.
166 ///
167 /// These are the columns derived from the directory structure that
168 /// will be appended to each row during query execution.
169 pub fn table_partition_cols(&self) -> &Vec<FieldRef> {
170 &self.table_partition_cols
171 }
172
173 /// Get the full table schema (file schema + partition columns).
174 ///
175 /// This is the complete schema that will be seen by queries, combining
176 /// both the columns from the files and the partition columns.
177 pub fn table_schema(&self) -> &SchemaRef {
178 &self.table_schema
179 }
180}
181
182impl From<SchemaRef> for TableSchema {
183 fn from(schema: SchemaRef) -> Self {
184 Self::from_file_schema(schema)
185 }
186}
187
188#[cfg(test)]
189mod tests {
190 use super::TableSchema;
191 use arrow::datatypes::{DataType, Field, Schema};
192 use std::sync::Arc;
193
194 #[test]
195 fn test_table_schema_creation() {
196 let file_schema = Arc::new(Schema::new(vec![
197 Field::new("user_id", DataType::Int64, false),
198 Field::new("amount", DataType::Float64, false),
199 ]));
200
201 let partition_cols = vec![
202 Arc::new(Field::new("date", DataType::Utf8, false)),
203 Arc::new(Field::new("region", DataType::Utf8, false)),
204 ];
205
206 let table_schema = TableSchema::new(file_schema.clone(), partition_cols.clone());
207
208 // Verify file schema
209 assert_eq!(table_schema.file_schema().as_ref(), file_schema.as_ref());
210
211 // Verify partition columns
212 assert_eq!(table_schema.table_partition_cols().len(), 2);
213 assert_eq!(table_schema.table_partition_cols()[0], partition_cols[0]);
214 assert_eq!(table_schema.table_partition_cols()[1], partition_cols[1]);
215
216 // Verify full table schema
217 let expected_fields = vec![
218 Field::new("user_id", DataType::Int64, false),
219 Field::new("amount", DataType::Float64, false),
220 Field::new("date", DataType::Utf8, false),
221 Field::new("region", DataType::Utf8, false),
222 ];
223 let expected_schema = Schema::new(expected_fields);
224 assert_eq!(table_schema.table_schema().as_ref(), &expected_schema);
225 }
226
227 #[test]
228 fn test_add_multiple_partition_columns() {
229 let file_schema =
230 Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)]));
231
232 let initial_partition_cols =
233 vec![Arc::new(Field::new("country", DataType::Utf8, false))];
234
235 let table_schema = TableSchema::new(file_schema.clone(), initial_partition_cols);
236
237 let additional_partition_cols = vec![
238 Arc::new(Field::new("city", DataType::Utf8, false)),
239 Arc::new(Field::new("year", DataType::Int32, false)),
240 ];
241
242 let updated_table_schema =
243 table_schema.with_table_partition_cols(additional_partition_cols);
244
245 // Verify file schema remains unchanged
246 assert_eq!(
247 updated_table_schema.file_schema().as_ref(),
248 file_schema.as_ref()
249 );
250
251 // Verify partition columns
252 assert_eq!(updated_table_schema.table_partition_cols().len(), 3);
253 assert_eq!(
254 updated_table_schema.table_partition_cols()[0].name(),
255 "country"
256 );
257 assert_eq!(
258 updated_table_schema.table_partition_cols()[1].name(),
259 "city"
260 );
261 assert_eq!(
262 updated_table_schema.table_partition_cols()[2].name(),
263 "year"
264 );
265
266 // Verify full table schema
267 let expected_fields = vec![
268 Field::new("id", DataType::Int32, false),
269 Field::new("country", DataType::Utf8, false),
270 Field::new("city", DataType::Utf8, false),
271 Field::new("year", DataType::Int32, false),
272 ];
273 let expected_schema = Schema::new(expected_fields);
274 assert_eq!(
275 updated_table_schema.table_schema().as_ref(),
276 &expected_schema
277 );
278 }
279}