1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! This module provides common traits for visiting or rewriting tree
//! data structures easily.

use std::sync::Arc;

use crate::Result;

/// Defines a visitable and rewriteable a tree node. This trait is
/// implemented for plans ([`ExecutionPlan`] and [`LogicalPlan`]) as
/// well as expression trees ([`PhysicalExpr`], [`Expr`]) in
/// DataFusion
///
/// <!-- Since these are in the datafusion-common crate, can't use intra doc links) -->
/// [`ExecutionPlan`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.ExecutionPlan.html
/// [`PhysicalExpr`]: https://docs.rs/datafusion/latest/datafusion/physical_plan/trait.PhysicalExpr.html
/// [`LogicalPlan`]: https://docs.rs/datafusion-expr/latest/datafusion_expr/logical_plan/enum.LogicalPlan.html
/// [`Expr`]: https://docs.rs/datafusion-expr/latest/datafusion_expr/expr/enum.Expr.html
pub trait TreeNode: Sized {
    /// Use preorder to iterate the node on the tree so that we can
    /// stop fast for some cases.
    ///
    /// The `op` closure can be used to collect some info from the
    /// tree node or do some checking for the tree node.
    fn apply<F>(&self, op: &mut F) -> Result<VisitRecursion>
    where
        F: FnMut(&Self) -> Result<VisitRecursion>,
    {
        match op(self)? {
            VisitRecursion::Continue => {}
            // If the recursion should skip, do not apply to its children. And let the recursion continue
            VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
            // If the recursion should stop, do not apply to its children
            VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
        };

        self.apply_children(&mut |node| node.apply(op))
    }

    /// Visit the tree node using the given [TreeNodeVisitor]
    /// It performs a depth first walk of an node and its children.
    ///
    /// For an node tree such as
    /// ```text
    /// ParentNode
    ///    left: ChildNode1
    ///    right: ChildNode2
    /// ```
    ///
    /// The nodes are visited using the following order
    /// ```text
    /// pre_visit(ParentNode)
    /// pre_visit(ChildNode1)
    /// post_visit(ChildNode1)
    /// pre_visit(ChildNode2)
    /// post_visit(ChildNode2)
    /// post_visit(ParentNode)
    /// ```
    ///
    /// If an Err result is returned, recursion is stopped immediately
    ///
    /// If [`VisitRecursion::Stop`] is returned on a call to pre_visit, no
    /// children of that node will be visited, nor is post_visit
    /// called on that node. Details see [`TreeNodeVisitor`]
    ///
    /// If using the default [`TreeNodeVisitor::post_visit`] that does
    /// nothing, [`Self::apply`] should be preferred.
    fn visit<V: TreeNodeVisitor<N = Self>>(
        &self,
        visitor: &mut V,
    ) -> Result<VisitRecursion> {
        match visitor.pre_visit(self)? {
            VisitRecursion::Continue => {}
            // If the recursion should skip, do not apply to its children. And let the recursion continue
            VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
            // If the recursion should stop, do not apply to its children
            VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
        };

        match self.apply_children(&mut |node| node.visit(visitor))? {
            VisitRecursion::Continue => {}
            // If the recursion should skip, do not apply to its children. And let the recursion continue
            VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
            // If the recursion should stop, do not apply to its children
            VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
        }

        visitor.post_visit(self)
    }

    /// Convenience utils for writing optimizers rule: recursively apply the given `op` to the node tree.
    /// When `op` does not apply to a given node, it is left unchanged.
    /// The default tree traversal direction is transform_up(Postorder Traversal).
    fn transform<F>(self, op: &F) -> Result<Self>
    where
        F: Fn(Self) -> Result<Transformed<Self>>,
    {
        self.transform_up(op)
    }

    /// Convenience utils for writing optimizers rule: recursively apply the given 'op' to the node and all of its
    /// children(Preorder Traversal).
    /// When the `op` does not apply to a given node, it is left unchanged.
    fn transform_down<F>(self, op: &F) -> Result<Self>
    where
        F: Fn(Self) -> Result<Transformed<Self>>,
    {
        let after_op = op(self)?.into();
        after_op.map_children(|node| node.transform_down(op))
    }

    /// Convenience utils for writing optimizers rule: recursively apply the given 'op' first to all of its
    /// children and then itself(Postorder Traversal).
    /// When the `op` does not apply to a given node, it is left unchanged.
    fn transform_up<F>(self, op: &F) -> Result<Self>
    where
        F: Fn(Self) -> Result<Transformed<Self>>,
    {
        let after_op_children = self.map_children(|node| node.transform_up(op))?;

        let new_node = op(after_op_children)?.into();
        Ok(new_node)
    }

    /// Transform the tree node using the given [TreeNodeRewriter]
    /// It performs a depth first walk of an node and its children.
    ///
    /// For an node tree such as
    /// ```text
    /// ParentNode
    ///    left: ChildNode1
    ///    right: ChildNode2
    /// ```
    ///
    /// The nodes are visited using the following order
    /// ```text
    /// pre_visit(ParentNode)
    /// pre_visit(ChildNode1)
    /// mutate(ChildNode1)
    /// pre_visit(ChildNode2)
    /// mutate(ChildNode2)
    /// mutate(ParentNode)
    /// ```
    ///
    /// If an Err result is returned, recursion is stopped immediately
    ///
    /// If [`false`] is returned on a call to pre_visit, no
    /// children of that node will be visited, nor is mutate
    /// called on that node
    ///
    /// If using the default [`TreeNodeRewriter::pre_visit`] which
    /// returns `true`, [`Self::transform`] should be preferred.
    fn rewrite<R: TreeNodeRewriter<N = Self>>(self, rewriter: &mut R) -> Result<Self> {
        let need_mutate = match rewriter.pre_visit(&self)? {
            RewriteRecursion::Mutate => return rewriter.mutate(self),
            RewriteRecursion::Stop => return Ok(self),
            RewriteRecursion::Continue => true,
            RewriteRecursion::Skip => false,
        };

        let after_op_children = self.map_children(|node| node.rewrite(rewriter))?;

        // now rewrite this node itself
        if need_mutate {
            rewriter.mutate(after_op_children)
        } else {
            Ok(after_op_children)
        }
    }

    /// Apply the closure `F` to the node's children
    fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>
    where
        F: FnMut(&Self) -> Result<VisitRecursion>;

    /// Apply transform `F` to the node's children, the transform `F` might have a direction(Preorder or Postorder)
    fn map_children<F>(self, transform: F) -> Result<Self>
    where
        F: FnMut(Self) -> Result<Self>;
}

/// Implements the [visitor
/// pattern](https://en.wikipedia.org/wiki/Visitor_pattern) for recursively walking [`TreeNode`]s.
///
/// [`TreeNodeVisitor`] allows keeping the algorithms
/// separate from the code to traverse the structure of the `TreeNode`
/// tree and makes it easier to add new types of tree node and
/// algorithms.
///
/// When passed to[`TreeNode::visit`], [`TreeNodeVisitor::pre_visit`]
/// and [`TreeNodeVisitor::post_visit`] are invoked recursively
/// on an node tree.
///
/// If an [`Err`] result is returned, recursion is stopped
/// immediately.
///
/// If [`VisitRecursion::Stop`] is returned on a call to pre_visit, no
/// children of that tree node are visited, nor is post_visit
/// called on that tree node
///
/// If [`VisitRecursion::Stop`] is returned on a call to post_visit, no
/// siblings of that tree node are visited, nor is post_visit
/// called on its parent tree node
///
/// If [`VisitRecursion::Skip`] is returned on a call to pre_visit, no
/// children of that tree node are visited.
pub trait TreeNodeVisitor: Sized {
    /// The node type which is visitable.
    type N: TreeNode;

    /// Invoked before any children of `node` are visited.
    fn pre_visit(&mut self, node: &Self::N) -> Result<VisitRecursion>;

    /// Invoked after all children of `node` are visited. Default
    /// implementation does nothing.
    fn post_visit(&mut self, _node: &Self::N) -> Result<VisitRecursion> {
        Ok(VisitRecursion::Continue)
    }
}

/// Trait for potentially recursively transform an [`TreeNode`] node
/// tree. When passed to `TreeNode::rewrite`, `TreeNodeRewriter::mutate` is
/// invoked recursively on all nodes of a tree.
pub trait TreeNodeRewriter: Sized {
    /// The node type which is rewritable.
    type N: TreeNode;

    /// Invoked before (Preorder) any children of `node` are rewritten /
    /// visited. Default implementation returns `Ok(Recursion::Continue)`
    fn pre_visit(&mut self, _node: &Self::N) -> Result<RewriteRecursion> {
        Ok(RewriteRecursion::Continue)
    }

    /// Invoked after (Postorder) all children of `node` have been mutated and
    /// returns a potentially modified node.
    fn mutate(&mut self, node: Self::N) -> Result<Self::N>;
}

/// Controls how the [`TreeNode`] recursion should proceed for [`TreeNode::rewrite`].
#[derive(Debug)]
pub enum RewriteRecursion {
    /// Continue rewrite this node tree.
    Continue,
    /// Call 'op' immediately and return.
    Mutate,
    /// Do not rewrite the children of this node.
    Stop,
    /// Keep recursive but skip apply op on this node
    Skip,
}

/// Controls how the [`TreeNode`] recursion should proceed for [`TreeNode::visit`].
#[derive(Debug)]
pub enum VisitRecursion {
    /// Continue the visit to this node tree.
    Continue,
    /// Keep recursive but skip applying op on the children
    Skip,
    /// Stop the visit to this node tree.
    Stop,
}

pub enum Transformed<T> {
    /// The item was transformed / rewritten somehow
    Yes(T),
    /// The item was not transformed
    No(T),
}

impl<T> Transformed<T> {
    pub fn into(self) -> T {
        match self {
            Transformed::Yes(t) => t,
            Transformed::No(t) => t,
        }
    }

    pub fn into_pair(self) -> (T, bool) {
        match self {
            Transformed::Yes(t) => (t, true),
            Transformed::No(t) => (t, false),
        }
    }
}

/// Helper trait for implementing [`TreeNode`] that have children stored as Arc's
///
/// If some trait object, such as `dyn T`, implements this trait,
/// its related `Arc<dyn T>` will automatically implement [`TreeNode`]
pub trait DynTreeNode {
    /// Returns all children of the specified TreeNode
    fn arc_children(&self) -> Vec<Arc<Self>>;

    /// construct a new self with the specified children
    fn with_new_arc_children(
        &self,
        arc_self: Arc<Self>,
        new_children: Vec<Arc<Self>>,
    ) -> Result<Arc<Self>>;
}

/// Blanket implementation for Arc for any tye that implements
/// [`DynTreeNode`] (such as [`Arc<dyn PhysicalExpr>`])
impl<T: DynTreeNode + ?Sized> TreeNode for Arc<T> {
    fn apply_children<F>(&self, op: &mut F) -> Result<VisitRecursion>
    where
        F: FnMut(&Self) -> Result<VisitRecursion>,
    {
        for child in self.arc_children() {
            match op(&child)? {
                VisitRecursion::Continue => {}
                VisitRecursion::Skip => return Ok(VisitRecursion::Continue),
                VisitRecursion::Stop => return Ok(VisitRecursion::Stop),
            }
        }

        Ok(VisitRecursion::Continue)
    }

    fn map_children<F>(self, transform: F) -> Result<Self>
    where
        F: FnMut(Self) -> Result<Self>,
    {
        let children = self.arc_children();
        if !children.is_empty() {
            let new_children: Result<Vec<_>> =
                children.into_iter().map(transform).collect();
            let arc_self = Arc::clone(&self);
            self.with_new_arc_children(arc_self, new_children?)
        } else {
            Ok(self)
        }
    }
}