datafusion_comet_spark_expr/unbound.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use arrow::array::RecordBatch;
19use arrow::datatypes::{DataType, Schema};
20use datafusion::common::{internal_err, Result};
21use datafusion::physical_expr::PhysicalExpr;
22use datafusion::physical_plan::ColumnarValue;
23use std::fmt::Formatter;
24use std::{hash::Hash, sync::Arc};
25
26/// This is similar to `UnKnownColumn` in DataFusion, but it has data type.
27/// This is only used when the column is not bound to a schema, for example, the
28/// inputs to aggregation functions in final aggregation. In the case, we cannot
29/// bind the aggregation functions to the input schema which is grouping columns
30/// and aggregate buffer attributes in Spark (DataFusion has different design).
31/// But when creating certain aggregation functions, we need to know its input
32/// data types. As `UnKnownColumn` doesn't have data type, we implement this
33/// `UnboundColumn` to carry the data type.
34#[derive(Debug, Hash, PartialEq, Eq, Clone)]
35pub struct UnboundColumn {
36 name: String,
37 datatype: DataType,
38}
39
40impl UnboundColumn {
41 /// Create a new unbound column expression
42 pub fn new(name: &str, datatype: DataType) -> Self {
43 Self {
44 name: name.to_owned(),
45 datatype,
46 }
47 }
48
49 /// Get the column name
50 pub fn name(&self) -> &str {
51 &self.name
52 }
53}
54
55impl std::fmt::Display for UnboundColumn {
56 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
57 write!(f, "{}, datatype: {}", self.name, self.datatype)
58 }
59}
60
61impl PhysicalExpr for UnboundColumn {
62 /// Return a reference to Any that can be used for downcasting
63 fn as_any(&self) -> &dyn std::any::Any {
64 self
65 }
66
67 fn fmt_sql(&self, _: &mut Formatter<'_>) -> std::fmt::Result {
68 unimplemented!()
69 }
70
71 /// Get the data type of this expression, given the schema of the input
72 fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
73 Ok(self.datatype.clone())
74 }
75
76 /// Decide whether this expression is nullable, given the schema of the input
77 fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
78 Ok(true)
79 }
80
81 /// Evaluate the expression
82 fn evaluate(&self, _batch: &RecordBatch) -> Result<ColumnarValue> {
83 internal_err!("UnboundColumn::evaluate() should not be called")
84 }
85
86 fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>> {
87 vec![]
88 }
89
90 fn with_new_children(
91 self: Arc<Self>,
92 _children: Vec<Arc<dyn PhysicalExpr>>,
93 ) -> Result<Arc<dyn PhysicalExpr>> {
94 Ok(self)
95 }
96}