datafusion_comet_spark_expr/utils.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use arrow_array::{
19 cast::as_primitive_array,
20 types::{Int32Type, TimestampMicrosecondType},
21};
22use arrow_schema::{ArrowError, DataType, TimeUnit, DECIMAL128_MAX_PRECISION};
23use std::sync::Arc;
24
25use crate::timezone::Tz;
26use arrow::{
27 array::{as_dictionary_array, Array, ArrayRef, PrimitiveArray},
28 temporal_conversions::as_datetime,
29};
30use arrow_array::types::TimestampMillisecondType;
31use arrow_data::decimal::{MAX_DECIMAL128_FOR_EACH_PRECISION, MIN_DECIMAL128_FOR_EACH_PRECISION};
32use chrono::{DateTime, Offset, TimeZone};
33
34/// Preprocesses input arrays to add timezone information from Spark to Arrow array datatype or
35/// to apply timezone offset.
36//
37// We consider the following cases:
38//
39// | --------------------- | ------------ | ----------------- | -------------------------------- |
40// | Conversion | Input array | Timezone | Output array |
41// | --------------------- | ------------ | ----------------- | -------------------------------- |
42// | Timestamp -> | Array in UTC | Timezone of input | A timestamp with the timezone |
43// | Utf8 or Date32 | | | offset applied and timezone |
44// | | | | removed |
45// | --------------------- | ------------ | ----------------- | -------------------------------- |
46// | Timestamp -> | Array in UTC | Timezone of input | Same as input array |
47// | Timestamp w/Timezone| | | |
48// | --------------------- | ------------ | ----------------- | -------------------------------- |
49// | Timestamp_ntz -> | Array in | Timezone of input | Same as input array |
50// | Utf8 or Date32 | timezone | | |
51// | | session local| | |
52// | | timezone | | |
53// | --------------------- | ------------ | ----------------- | -------------------------------- |
54// | Timestamp_ntz -> | Array in | Timezone of input | Array in UTC and timezone |
55// | Timestamp w/Timezone | session local| | specified in input |
56// | | timezone | | |
57// | --------------------- | ------------ | ----------------- | -------------------------------- |
58// | Timestamp(_ntz) -> | |
59// | Any other type | Not Supported |
60// | --------------------- | ------------ | ----------------- | -------------------------------- |
61//
62pub fn array_with_timezone(
63 array: ArrayRef,
64 timezone: String,
65 to_type: Option<&DataType>,
66) -> Result<ArrayRef, ArrowError> {
67 match array.data_type() {
68 DataType::Timestamp(_, None) => {
69 assert!(!timezone.is_empty());
70 match to_type {
71 Some(DataType::Utf8) | Some(DataType::Date32) => Ok(array),
72 Some(DataType::Timestamp(_, Some(_))) => {
73 timestamp_ntz_to_timestamp(array, timezone.as_str(), Some(timezone.as_str()))
74 }
75 _ => {
76 // Not supported
77 panic!(
78 "Cannot convert from {:?} to {:?}",
79 array.data_type(),
80 to_type.unwrap()
81 )
82 }
83 }
84 }
85 DataType::Timestamp(TimeUnit::Microsecond, Some(_)) => {
86 assert!(!timezone.is_empty());
87 let array = as_primitive_array::<TimestampMicrosecondType>(&array);
88 let array_with_timezone = array.clone().with_timezone(timezone.clone());
89 let array = Arc::new(array_with_timezone) as ArrayRef;
90 match to_type {
91 Some(DataType::Utf8) | Some(DataType::Date32) => {
92 pre_timestamp_cast(array, timezone)
93 }
94 _ => Ok(array),
95 }
96 }
97 DataType::Timestamp(TimeUnit::Millisecond, Some(_)) => {
98 assert!(!timezone.is_empty());
99 let array = as_primitive_array::<TimestampMillisecondType>(&array);
100 let array_with_timezone = array.clone().with_timezone(timezone.clone());
101 let array = Arc::new(array_with_timezone) as ArrayRef;
102 match to_type {
103 Some(DataType::Utf8) | Some(DataType::Date32) => {
104 pre_timestamp_cast(array, timezone)
105 }
106 _ => Ok(array),
107 }
108 }
109 DataType::Dictionary(_, value_type)
110 if matches!(value_type.as_ref(), &DataType::Timestamp(_, _)) =>
111 {
112 let dict = as_dictionary_array::<Int32Type>(&array);
113 let array = as_primitive_array::<TimestampMicrosecondType>(dict.values());
114 let array_with_timezone =
115 array_with_timezone(Arc::new(array.clone()) as ArrayRef, timezone, to_type)?;
116 let dict = dict.with_values(array_with_timezone);
117 Ok(Arc::new(dict))
118 }
119 _ => Ok(array),
120 }
121}
122
123fn datetime_cast_err(value: i64) -> ArrowError {
124 ArrowError::CastError(format!(
125 "Cannot convert TimestampMicrosecondType {value} to datetime. Comet only supports dates between Jan 1, 262145 BCE and Dec 31, 262143 CE",
126 ))
127}
128
129/// Takes in a Timestamp(Microsecond, None) array and a timezone id, and returns
130/// a Timestamp(Microsecond, Some<_>) array.
131/// The understanding is that the input array has time in the timezone specified in the second
132/// argument.
133/// Parameters:
134/// array - input array of timestamp without timezone
135/// tz - timezone of the values in the input array
136/// to_timezone - timezone to change the input values to
137fn timestamp_ntz_to_timestamp(
138 array: ArrayRef,
139 tz: &str,
140 to_timezone: Option<&str>,
141) -> Result<ArrayRef, ArrowError> {
142 assert!(!tz.is_empty());
143 match array.data_type() {
144 DataType::Timestamp(TimeUnit::Microsecond, None) => {
145 let array = as_primitive_array::<TimestampMicrosecondType>(&array);
146 let tz: Tz = tz.parse()?;
147 let array: PrimitiveArray<TimestampMicrosecondType> = array.try_unary(|value| {
148 as_datetime::<TimestampMicrosecondType>(value)
149 .ok_or_else(|| datetime_cast_err(value))
150 .map(|local_datetime| {
151 let datetime: DateTime<Tz> =
152 tz.from_local_datetime(&local_datetime).unwrap();
153 datetime.timestamp_micros()
154 })
155 })?;
156 let array_with_tz = if let Some(to_tz) = to_timezone {
157 array.with_timezone(to_tz)
158 } else {
159 array
160 };
161 Ok(Arc::new(array_with_tz))
162 }
163 DataType::Timestamp(TimeUnit::Millisecond, None) => {
164 let array = as_primitive_array::<TimestampMillisecondType>(&array);
165 let tz: Tz = tz.parse()?;
166 let array: PrimitiveArray<TimestampMillisecondType> = array.try_unary(|value| {
167 as_datetime::<TimestampMillisecondType>(value)
168 .ok_or_else(|| datetime_cast_err(value))
169 .map(|local_datetime| {
170 let datetime: DateTime<Tz> =
171 tz.from_local_datetime(&local_datetime).unwrap();
172 datetime.timestamp_millis()
173 })
174 })?;
175 let array_with_tz = if let Some(to_tz) = to_timezone {
176 array.with_timezone(to_tz)
177 } else {
178 array
179 };
180 Ok(Arc::new(array_with_tz))
181 }
182 _ => Ok(array),
183 }
184}
185
186/// This takes for special pre-casting cases of Spark. E.g., Timestamp to String.
187fn pre_timestamp_cast(array: ArrayRef, timezone: String) -> Result<ArrayRef, ArrowError> {
188 assert!(!timezone.is_empty());
189 match array.data_type() {
190 DataType::Timestamp(_, _) => {
191 // Spark doesn't output timezone while casting timestamp to string, but arrow's cast
192 // kernel does if timezone exists. So we need to apply offset of timezone to array
193 // timestamp value and remove timezone from array datatype.
194 let array = as_primitive_array::<TimestampMicrosecondType>(&array);
195
196 let tz: Tz = timezone.parse()?;
197 let array: PrimitiveArray<TimestampMicrosecondType> = array.try_unary(|value| {
198 as_datetime::<TimestampMicrosecondType>(value)
199 .ok_or_else(|| datetime_cast_err(value))
200 .map(|datetime| {
201 let offset = tz.offset_from_utc_datetime(&datetime).fix();
202 let datetime = datetime + offset;
203 datetime.and_utc().timestamp_micros()
204 })
205 })?;
206
207 Ok(Arc::new(array))
208 }
209 _ => Ok(array),
210 }
211}
212
213/// Adapted from arrow-rs `validate_decimal_precision` but returns bool
214/// instead of Err to avoid the cost of formatting the error strings and is
215/// optimized to remove a memcpy that exists in the original function
216/// we can remove this code once we upgrade to a version of arrow-rs that
217/// includes https://github.com/apache/arrow-rs/pull/6419
218#[inline]
219pub fn is_valid_decimal_precision(value: i128, precision: u8) -> bool {
220 precision <= DECIMAL128_MAX_PRECISION
221 && value >= MIN_DECIMAL128_FOR_EACH_PRECISION[precision as usize]
222 && value <= MAX_DECIMAL128_FOR_EACH_PRECISION[precision as usize]
223}
224
225// These are borrowed from hashbrown crate:
226// https://github.com/rust-lang/hashbrown/blob/master/src/raw/mod.rs
227
228// On stable we can use #[cold] to get a equivalent effect: this attributes
229// suggests that the function is unlikely to be called
230#[inline]
231#[cold]
232pub fn cold() {}
233
234#[inline]
235pub fn likely(b: bool) -> bool {
236 if !b {
237 cold();
238 }
239 b
240}
241#[inline]
242pub fn unlikely(b: bool) -> bool {
243 if b {
244 cold();
245 }
246 b
247}