datafusion_comet_spark_expr/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

// The clippy throws an error if the reference clone not wrapped into `Arc::clone`
// The lint makes easier for code reader/reviewer separate references clones from more heavyweight ones
#![deny(clippy::clone_on_ref_ptr)]

mod cast;
mod error;
mod if_expr;

mod bitwise_not;
pub use bitwise_not::{bitwise_not, BitwiseNotExpr};
mod checkoverflow;
pub use checkoverflow::CheckOverflow;

mod kernels;
mod list;
pub mod scalar_funcs;
mod schema_adapter;
mod static_invoke;
pub use schema_adapter::SparkSchemaAdapterFactory;
pub use static_invoke::*;

mod negative;
mod struct_funcs;
pub use negative::{create_negate_expr, NegativeExpr};
mod normalize_nan;

mod json_funcs;
pub mod test_common;
pub mod timezone;
mod unbound;
pub use unbound::UnboundColumn;
pub mod utils;
pub use normalize_nan::NormalizeNaNAndZero;
mod predicate_funcs;
pub use predicate_funcs::{spark_isnan, RLike};

mod agg_funcs;
mod comet_scalar_funcs;
pub mod hash_funcs;

mod string_funcs;

mod datetime_funcs;
pub use agg_funcs::*;

pub use crate::{CreateNamedStruct, GetStructField};
pub use crate::{DateTruncExpr, HourExpr, MinuteExpr, SecondExpr, TimestampTruncExpr};
pub use cast::{spark_cast, Cast, SparkCastOptions};
pub use comet_scalar_funcs::create_comet_physical_fun;
pub use datetime_funcs::*;
pub use error::{SparkError, SparkResult};
pub use hash_funcs::*;
pub use if_expr::IfExpr;
pub use json_funcs::ToJson;
pub use list::{ArrayInsert, GetArrayStructFields, ListExtract};
pub use string_funcs::*;
pub use struct_funcs::*;

/// Spark supports three evaluation modes when evaluating expressions, which affect
/// the behavior when processing input values that are invalid or would result in an
/// error, such as divide by zero errors, and also affects behavior when converting
/// between types.
#[derive(Debug, Hash, PartialEq, Eq, Clone, Copy)]
pub enum EvalMode {
    /// Legacy is the default behavior in Spark prior to Spark 4.0. This mode silently ignores
    /// or replaces errors during SQL operations. Operations resulting in errors (like
    /// division by zero) will produce NULL values instead of failing. Legacy mode also
    /// enables implicit type conversions.
    Legacy,
    /// Adheres to the ANSI SQL standard for error handling by throwing exceptions for
    /// operations that result in errors. Does not perform implicit type conversions.
    Ansi,
    /// Same as Ansi mode, except that it converts errors to NULL values without
    /// failing the entire query.
    Try,
}

pub(crate) fn arithmetic_overflow_error(from_type: &str) -> SparkError {
    SparkError::ArithmeticOverflow {
        from_type: from_type.to_string(),
    }
}