1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::scalar_funcs::hex::hex_strings;
use crate::spark_hash::{create_murmur3_hashes, create_xxhash64_hashes};

use arrow_array::{ArrayRef, Int32Array, Int64Array, StringArray};
use datafusion::functions::crypto::{sha224, sha256, sha384, sha512};
use datafusion_common::cast::as_binary_array;
use datafusion_common::{exec_err, internal_err, DataFusionError, ScalarValue};
use datafusion_expr::{ColumnarValue, ScalarFunctionImplementation};
use std::sync::Arc;

/// Spark compatible murmur3 hash (just `hash` in Spark) in vectorized execution fashion
pub fn spark_murmur3_hash(args: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
    let length = args.len();
    let seed = &args[length - 1];
    match seed {
        ColumnarValue::Scalar(ScalarValue::Int32(Some(seed))) => {
            // iterate over the arguments to find out the length of the array
            let num_rows = args[0..args.len() - 1]
                .iter()
                .find_map(|arg| match arg {
                    ColumnarValue::Array(array) => Some(array.len()),
                    ColumnarValue::Scalar(_) => None,
                })
                .unwrap_or(1);
            let mut hashes: Vec<u32> = vec![0_u32; num_rows];
            hashes.fill(*seed as u32);
            let arrays = args[0..args.len() - 1]
                .iter()
                .map(|arg| match arg {
                    ColumnarValue::Array(array) => Arc::clone(array),
                    ColumnarValue::Scalar(scalar) => {
                        scalar.clone().to_array_of_size(num_rows).unwrap()
                    }
                })
                .collect::<Vec<ArrayRef>>();
            create_murmur3_hashes(&arrays, &mut hashes)?;
            if num_rows == 1 {
                Ok(ColumnarValue::Scalar(ScalarValue::Int32(Some(
                    hashes[0] as i32,
                ))))
            } else {
                let hashes: Vec<i32> = hashes.into_iter().map(|x| x as i32).collect();
                Ok(ColumnarValue::Array(Arc::new(Int32Array::from(hashes))))
            }
        }
        _ => {
            internal_err!(
                "The seed of function murmur3_hash must be an Int32 scalar value, but got: {:?}.",
                seed
            )
        }
    }
}

/// Spark compatible xxhash64 in vectorized execution fashion
pub fn spark_xxhash64(args: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
    let length = args.len();
    let seed = &args[length - 1];
    match seed {
        ColumnarValue::Scalar(ScalarValue::Int64(Some(seed))) => {
            // iterate over the arguments to find out the length of the array
            let num_rows = args[0..args.len() - 1]
                .iter()
                .find_map(|arg| match arg {
                    ColumnarValue::Array(array) => Some(array.len()),
                    ColumnarValue::Scalar(_) => None,
                })
                .unwrap_or(1);
            let mut hashes: Vec<u64> = vec![0_u64; num_rows];
            hashes.fill(*seed as u64);
            let arrays = args[0..args.len() - 1]
                .iter()
                .map(|arg| match arg {
                    ColumnarValue::Array(array) => Arc::clone(array),
                    ColumnarValue::Scalar(scalar) => {
                        scalar.clone().to_array_of_size(num_rows).unwrap()
                    }
                })
                .collect::<Vec<ArrayRef>>();
            create_xxhash64_hashes(&arrays, &mut hashes)?;
            if num_rows == 1 {
                Ok(ColumnarValue::Scalar(ScalarValue::Int64(Some(
                    hashes[0] as i64,
                ))))
            } else {
                let hashes: Vec<i64> = hashes.into_iter().map(|x| x as i64).collect();
                Ok(ColumnarValue::Array(Arc::new(Int64Array::from(hashes))))
            }
        }
        _ => {
            internal_err!(
                "The seed of function xxhash64 must be an Int64 scalar value, but got: {:?}.",
                seed
            )
        }
    }
}

/// `sha224` function that simulates Spark's `sha2` expression with bit width 224
pub fn spark_sha224(args: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
    wrap_digest_result_as_hex_string(args, sha224().fun())
}

/// `sha256` function that simulates Spark's `sha2` expression with bit width 0 or 256
pub fn spark_sha256(args: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
    wrap_digest_result_as_hex_string(args, sha256().fun())
}

/// `sha384` function that simulates Spark's `sha2` expression with bit width 384
pub fn spark_sha384(args: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
    wrap_digest_result_as_hex_string(args, sha384().fun())
}

/// `sha512` function that simulates Spark's `sha2` expression with bit width 512
pub fn spark_sha512(args: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
    wrap_digest_result_as_hex_string(args, sha512().fun())
}

// Spark requires hex string as the result of sha2 functions, we have to wrap the
// result of digest functions as hex string
fn wrap_digest_result_as_hex_string(
    args: &[ColumnarValue],
    digest: ScalarFunctionImplementation,
) -> Result<ColumnarValue, DataFusionError> {
    let value = digest(args)?;
    match value {
        ColumnarValue::Array(array) => {
            let binary_array = as_binary_array(&array)?;
            let string_array: StringArray = binary_array
                .iter()
                .map(|opt| opt.map(hex_strings::<_>))
                .collect();
            Ok(ColumnarValue::Array(Arc::new(string_array)))
        }
        ColumnarValue::Scalar(ScalarValue::Binary(opt)) => Ok(ColumnarValue::Scalar(
            ScalarValue::Utf8(opt.map(hex_strings::<_>)),
        )),
        _ => {
            exec_err!(
                "digest function should return binary value, but got: {:?}",
                value.data_type()
            )
        }
    }
}