1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
// SPDX-License-Identifier: Apache-2.0
mod slice;
mod std_io;
use std::io;
use bytemuck::{bytes_of, bytes_of_mut, Pod};
use num_traits::PrimInt;
#[derive(Debug, thiserror::Error)]
#[error(transparent)]
pub enum Error {
Io(#[from] io::Error),
#[error("premature end-of-stream when reading {required_count} bytes")]
End {
required_count: usize
},
Utf8(#[from] simdutf8::compat::Utf8Error),
}
pub type Result<T = (), E = Error> = std::result::Result<T, E>;
/// A source stream of data.
pub trait DataSource {
/// Returns the number of bytes available for reading.
fn available(&self) -> usize;
/// Reads at most `count` bytes into an internal buffer, returning the whether
/// enough bytes are available. To return an end-of-stream error, use [`require`]
/// instead.
///
/// Note that a request returning `false` doesn't necessarily mean the stream
/// has ended. More bytes may be read after.
///
/// [`require`]: Self::require
fn request(&mut self, count: usize) -> Result<bool>;
/// Reads at least `count` bytes into an internal buffer, returning the available
/// count if successful, or an end-of-stream error if not. For a softer version
/// that returns whether enough bytes are available, use [`request`].
///
/// [`request`]: Self::request
fn require(&mut self, count: usize) -> Result {
if self.request(count)? {
Ok(())
} else {
Err(Error::End { required_count: count })
}
}
/// Reads bytes into a slice, returning the bytes read.
fn read_bytes<'a>(&mut self, buf: &'a mut [u8]) -> Result<&'a [u8]>;
/// Reads the exact length of bytes into a slice, returning the bytes read if
/// successful, or an end-of-stream error if not. Bytes are not consumed if an
/// end-of-stream error is returned.
fn read_exact_bytes<'a>(&mut self, buf: &'a mut [u8]) -> Result<&'a [u8]> {
let len = buf.len();
self.require(len)?;
let bytes = self.read_bytes(buf)?;
assert_eq!(bytes.len(), len);
Ok(bytes)
}
/// Reads an array with a size of `N` bytes.
fn read_array<const N: usize>(&mut self) -> Result<[u8; N]> {
let mut array = [0; N];
self.read_exact_bytes(&mut array)?;
Ok(array)
}
/// Reads a [`u8`].
fn read_u8(&mut self) -> Result<u8> { self.read_int() }
/// Reads an [`i8`].
fn read_i8(&mut self) -> Result<i8> { self.read_int() }
/// Reads a big-endian [`u16`].
fn read_u16(&mut self) -> Result<u16> { self.read_int() }
/// Reads a big-endian [`i16`].
fn read_i16(&mut self) -> Result<i16> { self.read_int() }
/// Reads a little-endian [`u16`].
fn read_u16_le(&mut self) -> Result<u16> { self.read_int_le() }
/// Reads a little-endian [`i16`].
fn read_i16_le(&mut self) -> Result<i16> { self.read_int_le() }
/// Reads a big-endian [`u32`].
fn read_u32(&mut self) -> Result<u32> { self.read_int() }
/// Reads a big-endian [`i32`].
fn read_i32(&mut self) -> Result<i32> { self.read_int() }
/// Reads a little-endian [`u32`].
fn read_u32_le(&mut self) -> Result<u32> { self.read_int_le() }
/// Reads a little-endian [`i32`].
fn read_i32_le(&mut self) -> Result<i32> { self.read_int_le() }
/// Reads a big-endian [`u64`].
fn read_u64(&mut self) -> Result<u64> { self.read_int() }
/// Reads a big-endian [`i64`].
fn read_i64(&mut self) -> Result<i64> { self.read_int() }
/// Reads a little-endian [`u64`].
fn read_u64_le(&mut self) -> Result<u64> { self.read_int_le() }
/// Reads a little-endian [`i64`].
fn read_i64_le(&mut self) -> Result<i64> { self.read_int_le() }
/// Reads a big-endian [`u128`].
fn read_u128(&mut self) -> Result<u128> { self.read_int() }
/// Reads a big-endian [`i128`].
fn read_i128(&mut self) -> Result<i128> { self.read_int() }
/// Reads a little-endian [`u128`].
fn read_u128_le(&mut self) -> Result<u128> { self.read_int_le() }
/// Reads a little-endian [`i128`].
fn read_i128_le(&mut self) -> Result<i128> { self.read_int_le() }
/// Reads a big-endian [`usize`]. To make streams consistent across platforms,
/// [`usize`] is fixed to the size of [`u64`] regardless of the target platform.
fn read_usize(&mut self) -> Result<usize> {
self.read_u64().map(|i| i as usize)
}
/// Reads a big-endian [`isize`]. To make streams consistent across platforms,
/// [`isize`] is fixed to the size of [`i64`] regardless of the target platform.
fn read_isize(&mut self) -> Result<isize> {
self.read_i64().map(|i| i as isize)
}
/// Reads a little-endian [`usize`]. To make streams consistent across platforms,
/// [`usize`] is fixed to the size of [`u64`] regardless of the target platform.
fn read_usize_le(&mut self) -> Result<usize> {
self.read_u64_le().map(|i| i as usize)
}
/// Reads a little-endian [`isize`]. To make streams consistent across platforms,
/// [`isize`] is fixed to the size of [`i64`] regardless of the target platform.
fn read_isize_le(&mut self) -> Result<isize> {
self.read_i64_le().map(|i| i as isize)
}
/// Reads a big-endian integer.
fn read_int<T: PrimInt + Pod>(&mut self) -> Result<T> {
self.read_data::<T>().map(T::from_be)
}
/// Reads a little-endian integer.
fn read_int_le<T: PrimInt + Pod>(&mut self) -> Result<T> {
self.read_data::<T>().map(T::from_le)
}
/// Reads a value of generic type `T` supporting an arbitrary bit pattern. See
/// [`Pod`].
fn read_data<T: Pod>(&mut self) -> Result<T> {
let mut value = T::zeroed();
self.read_exact_bytes(bytes_of_mut(&mut value))?;
Ok(value)
}
/// Reads up to `count` bytes of UTF-8 into `buf`, returning the string read.
/// If invalid bytes are encountered, an error is returned and `buf` is unchanged.
/// In this case, the stream is left in a state with up to `count` bytes consumed
/// from it, including the invalid bytes and any subsequent bytes.
fn read_utf8<'a>(&mut self, count: usize, buf: &'a mut String) -> Result<&'a str> {
buf.reserve(count);
unsafe {
append_utf8(buf, |b| {
let len = b.len();
b.set_len(len + count);
self.read_bytes(&mut b[len..])
.map(<[u8]>::len)
})
}
}
/// Reads UTF-8 bytes into `buf` until the end of the stream, returning the
/// string read. If invalid bytes are encountered, an error is returned and
/// `buf` is unchanged. In this case, the stream is left in a state with an
/// undefined number of bytes read.
fn read_utf8_to_end<'a>(&mut self, buf: &'a mut String) -> Result<&'a str>;
}
pub trait DataSink {
/// Writes all bytes from `buf`. Equivalent to [`Write::write_all`].
///
/// [`Write::write_all`]: std::io::Write::write_all
fn write_bytes(&mut self, buf: &[u8]) -> Result;
/// Writes a [`u8`].
fn write_u8(&mut self, value: u8) -> Result { self.write_int(value) }
/// Writes an [`i8`].
fn write_i8(&mut self, value: i8) -> Result { self.write_int(value) }
/// Writes a big-endian [`u16`].
fn write_u16(&mut self, value: u16) -> Result { self.write_int(value) }
/// Writes a big-endian [`i16`].
fn write_i16(&mut self, value: i16) -> Result { self.write_int(value) }
/// Writes a little-endian [`u16`].
fn write_u16_le(&mut self, value: u16) -> Result { self.write_int_le(value) }
/// Writes a little-endian [`i16`].
fn write_i16_le(&mut self, value: i16) -> Result { self.write_int_le(value) }
/// Writes a big-endian [`u32`].
fn write_u32(&mut self, value: u32) -> Result { self.write_int(value) }
/// Writes a big-endian [`i32`].
fn write_i32(&mut self, value: i32) -> Result { self.write_int(value) }
/// Writes a little-endian [`u32`].
fn write_u32_le(&mut self, value: u32) -> Result { self.write_int_le(value) }
/// Writes a little-endian [`i32`].
fn write_i32_le(&mut self, value: i32) -> Result { self.write_int_le(value) }
/// Writes a big-endian [`u64`].
fn write_u64(&mut self, value: u64) -> Result { self.write_int(value) }
/// Writes a big-endian [`i64`].
fn write_i64(&mut self, value: i64) -> Result { self.write_int(value) }
/// Writes a little-endian [`u64`].
fn write_u64_le(&mut self, value: u64) -> Result { self.write_int_le(value) }
/// Writes a little-endian [`i64`].
fn write_i64_le(&mut self, value: i64) -> Result { self.write_int_le(value) }
/// Writes a big-endian [`u128`].
fn write_u128(&mut self, value: u128) -> Result { self.write_int(value) }
/// Writes a big-endian [`i128`].
fn write_i128(&mut self, value: i128) -> Result { self.write_int(value) }
/// Writes a little-endian [`u128`].
fn write_u128_le(&mut self, value: u128) -> Result { self.write_int_le(value) }
/// Writes a little-endian [`i128`].
fn write_i128_le(&mut self, value: i128) -> Result { self.write_int_le(value) }
/// Writes a big-endian [`usize`]. To make streams consistent across platforms,
/// [`usize`] is fixed to the size of [`u64`] regardless of the target platform.
fn write_usize(&mut self, value: usize) -> Result {
self.write_u64(value as u64)
}
/// Writes a big-endian [`isize`]. To make streams consistent across platforms,
/// [`isize`] is fixed to the size of [`i64`] regardless of the target platform.
fn write_isize(&mut self, value: isize) -> Result {
self.write_i64(value as i64)
}
/// Writes a little-endian [`usize`]. To make streams consistent across platforms,
/// [`usize`] is fixed to the size of [`u64`] regardless of the target platform.
fn write_usize_le(&mut self, value: usize) -> Result {
self.write_u64_le(value as u64)
}
/// Writes a little-endian [`isize`]. To make streams consistent across platforms,
/// [`isize`] is fixed to the size of [`i64`] regardless of the target platform.
fn write_isize_le(&mut self, value: isize) -> Result {
self.write_i64_le(value as i64)
}
/// Writes a big-endian integer.
fn write_int<T: PrimInt + Pod>(&mut self, value: T) -> Result {
self.write_data(value.to_be())
}
/// Writes a little-endian integer.
fn write_int_le<T: PrimInt + Pod>(&mut self, value: T) -> Result {
self.write_data(value.to_le())
}
/// Writes a value of an arbitrary bit pattern. See [`Pod`].
fn write_data<T: Pod>(&mut self, value: T) -> Result {
self.write_bytes(bytes_of(&value))
}
/// Writes a UTF-8 string.
fn write_utf8(&mut self, value: &str) -> Result {
self.write_bytes(value.as_bytes())
}
}
unsafe fn append_utf8<R>(buf: &mut String, read: R) -> Result<&str>
where
R: FnOnce(&mut Vec<u8>) -> Result<usize> {
use simdutf8::compat::from_utf8;
// A drop guard which ensures the string is truncated to valid UTF-8 when out
// of scope. Starts by truncating to its original length, only allowing the
// string to grow after the new bytes are checked to be valid UTF-8.
struct Guard<'a> {
len: usize,
buf: &'a mut Vec<u8>
}
impl Drop for Guard<'_> {
fn drop(&mut self) {
unsafe {
self.buf.set_len(self.len);
}
}
}
let start;
{
let mut guard = Guard { len: buf.len(), buf: buf.as_mut_vec() };
let count = read(guard.buf)?;
from_utf8(&guard.buf[guard.len..][..count])?;
start = guard.len;
guard.len += count;
}
Ok(&buf[start..])
}