data_pipeline_rs/
node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
use std::{
    sync::{Arc, Mutex},
    time::{Duration, Instant},
};

use anyhow::anyhow;
use serde_json::json;

use crate::{
    data_handler::SomeDataHandler, node_visitor::NodeVisitor, stats_producer::StatsProducer,
};

#[derive(Default)]
struct NodeStatsTracker {
    data_ingress: u32,
    data_egress: u32,
    data_discarded: u32,
    errors: u32,
    total_processing_time: Duration,
}

/// [`NodeRef`] is really just a convenience helper to hide how references are held and take care
/// of the mutex logic
pub struct NodeRef<T>(Arc<Mutex<Node<T>>>);

// derive(Clone) doesn't work with the generic
impl<T> Clone for NodeRef<T> {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

impl<T> From<Node<T>> for NodeRef<T> {
    fn from(val: Node<T>) -> Self {
        NodeRef::new(val)
    }
}

impl<T> NodeRef<T> {
    pub fn new(node: Node<T>) -> NodeRef<T> {
        NodeRef(Arc::new(Mutex::new(node)))
    }

    pub fn name(&self) -> String {
        self.0.lock().unwrap().name.clone()
    }

    pub fn set_next(&self, next: NodeRef<T>) {
        self.0.lock().unwrap().next = Some(next)
    }

    pub fn set_prev(&self, prev: NodeRef<T>) {
        self.0.lock().unwrap().prev = Some(prev)
    }

    pub fn process_data(&self, data: T) {
        self.0.lock().unwrap().process_data(data);
    }

    pub fn visit(&self, visitor: &mut dyn NodeVisitor<T>) {
        self.0.lock().unwrap().visit(visitor)
    }
}

/// A helper type to model the possible outcomes of passing data to [`SomeDataHandler`].
// Note: I had a thought to get rid of 'ForwardToNext' and always use 'ForwardTo', but non-demux
// nodes don't know/care if there _is_ a next node.  For a demuxer, which uses ForwardTo, there
// will be a definitive next node to forward to, so at this point I think the two variants make
// sense?
enum SomeDataHandlerResult<'a, T> {
    // The given data should be forwarded to the next node
    ForwardToNext(T),
    // The given data should be forwarded to the given node
    ForwardTo(T, &'a NodeRef<T>),
    // The data was consumed
    Consumed,
    // The data should be discarded
    Discard,
}

pub struct Node<T> {
    name: String,
    handler: SomeDataHandler<T>,
    stats: NodeStatsTracker,
    next: Option<NodeRef<T>>,
    prev: Option<NodeRef<T>>,
}

impl<T> Node<T> {
    pub fn new<U: Into<String>, V: Into<SomeDataHandler<T>>>(name: U, handler: V) -> Node<T> {
        Self {
            name: name.into(),
            handler: handler.into(),
            stats: NodeStatsTracker::default(),
            next: None,
            prev: None,
        }
    }

    pub fn name(&self) -> &str {
        self.name.as_str()
    }

    pub fn set_next(&mut self, next: NodeRef<T>) {
        self.next = Some(next)
    }

    pub fn set_prev(&mut self, prev: NodeRef<T>) {
        self.prev = Some(prev)
    }

    pub fn process_data(&mut self, data: T) {
        self.stats.data_ingress += 1;
        let start = Instant::now();
        let data_handler_result = match self.handler {
            SomeDataHandler::Observer(ref mut o) => {
                o.observe(&data);
                Ok(SomeDataHandlerResult::ForwardToNext(data))
            }
            SomeDataHandler::Transformer(ref mut t) => match t.transform(data) {
                Ok(transformed) => Ok(SomeDataHandlerResult::ForwardToNext(transformed)),
                Err(e) => Err(anyhow!("Data transformer {} failed: {e:?}", self.name)),
            },
            SomeDataHandler::Filter(ref mut f) => match f.should_forward(&data) {
                true => Ok(SomeDataHandlerResult::ForwardToNext(data)),
                false => Ok(SomeDataHandlerResult::Discard),
            },
            SomeDataHandler::Consumer(ref mut c) => {
                c.consume(data);
                Ok(SomeDataHandlerResult::Consumed)
            }
            SomeDataHandler::Demuxer(ref mut d) => {
                if let Some(path) = d.find_path(&data) {
                    Ok(SomeDataHandlerResult::ForwardTo(data, path))
                } else {
                    Ok(SomeDataHandlerResult::Discard)
                }
            }
        };
        let processing_duration = Instant::now() - start;
        self.stats.total_processing_time += processing_duration;
        match data_handler_result {
            Ok(SomeDataHandlerResult::ForwardToNext(p)) => {
                self.stats.data_egress += 1;
                if let Some(ref n) = self.next {
                    n.process_data(p);
                }
            }
            Ok(SomeDataHandlerResult::ForwardTo(p, next)) => {
                self.stats.data_egress += 1;
                next.process_data(p);
            }
            Ok(SomeDataHandlerResult::Discard) => {
                self.stats.data_discarded += 1;
            }
            Ok(SomeDataHandlerResult::Consumed) => {
                // no-op
            }
            Err(e) => {
                self.stats.errors += 1;
                println!("Error processing data: {e:?}")
            }
        }
    }

    pub fn visit(&mut self, visitor: &mut dyn NodeVisitor<T>) {
        visitor.visit(self);
        if let SomeDataHandler::Demuxer(ref mut d) = self.handler {
            d.visit(visitor)
        };
        if let Some(ref mut n) = self.next {
            n.visit(visitor);
        }
    }
}

impl<T> StatsProducer for Node<T> {
    fn get_stats(&self) -> Option<serde_json::Value> {
        Some(json!({
            "data_ingress": self.stats.data_ingress,
            "data_egress": self.stats.data_egress,
            "data_discarded": self.stats.data_discarded,
            "errors": self.stats.errors,
            "total processing time": format!("{:?}", self.stats.total_processing_time),
            "process time per item": format!("{:?}", (self.stats.total_processing_time / self.stats.data_ingress)),
            "handler_stats": self.handler.get_stats(),
        }))
    }
}