1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
//! Correct, efficient, canonical, and generic data-encoding functions
//!
//! This [crate] provides little-endian ASCII base-conversion encodings for
//! bases of size 2, 4, 8, 16, 32, and 64. It supports both padded and
//! non-padded encodings. It supports canonical encodings (trailing bits are
//! checked). It supports in-place encoding and decoding functions. It supports
//! non-canonical symbols. And it supports both most and least significant
//! bit-order. The performance of the encoding and decoding functions are
//! similar to existing implementations (see how to run the benchmarks on
//! [github]).
//!
//! This is the library documentation. If you are looking for the [binary], see
//! the installation instructions on [github].
//!
//! # Examples
//!
//! This crate provides predefined encodings as [constants]. These constants are
//! of type [`Padded`] or [`NoPad`] whether they use padding or not. These types
//! provide encoding and decoding functions with in-place or allocating
//! variants. Here is an example using the allocating encoding function of
//! [base64]:
//!
//! ```
//! use data_encoding::BASE64;
//! assert_eq!(BASE64.encode(b"Hello world"), "SGVsbG8gd29ybGQ=");
//! ```
//!
//! It is also possible to use the non-padded version of base64 by calling the
//! [`no_pad`] method of [`Padded`]:
//!
//! ```
//! use data_encoding::BASE64;
//! assert_eq!(BASE64.no_pad().encode(b"Hello world"), "SGVsbG8gd29ybGQ");
//! ```
//!
//! Here is an example using the in-place decoding function of [base32]:
//!
//! ```
//! use data_encoding::BASE32;
//! let input = b"JBSWY3DPEB3W64TMMQ======";
//! let mut output = vec![0; BASE32.decode_len(input.len()).unwrap()];
//! let len = BASE32.decode_mut(input, &mut output).unwrap();
//! assert_eq!(&output[0 .. len], b"Hello world");
//! ```
//!
//! You are not limited to the predefined encodings. You may define your own
//! encodings (with the same correctness and performance properties as the
//! predefined ones) using the [`Builder`] type:
//!
//! ```rust
//! use data_encoding::Builder;
//! let hex = Builder::new(b"0123456789abcdef").no_pad().unwrap();
//! assert_eq!(hex.encode(b"hello"), "68656c6c6f");
//! ```
//!
//! # Properties
//!
//! The [base16], [base32], [base32hex], [base64], and [base64url] predefined
//! encodings are conform to [RFC4648].
//!
//! The encoding and decoding functions satisfy the following properties:
//!
//! - They are deterministic: their output only depends on their input
//! - They have no side-effects: they do not modify a hidden mutable state
//! - They are correct: encoding then decoding gives the initial data
//! - They are canonical (unless non-canonical symbols are used or checking
//! trailing bits is disabled): decoding then encoding gives the initial data
//!
//! This last property is usually not satisfied by common base64 implementations
//! (like the `rustc-serialize` crate, the `base64` crate, or the `base64` GNU
//! program). This is a matter of choice and this crate has made the choice to
//! let the user choose. Support for canonical encoding as described by the
//! [RFC][canonical] is provided. But it is also possible to disable checking
//! trailing bits, to add non-canonical symbols, and to decode concatenated
//! padded inputs.
//!
//! Since the RFC specifies the encoding function on all inputs and the decoding
//! function on all possible encoded outputs, the differences between
//! implementations come from the decoding function which may be more or less
//! permissive. In this crate, the decoding function of canonical encodings
//! rejects all inputs that are not a possible output of the encoding function.
//! Here are some concrete examples of decoding differences between this crate,
//! the `rustc-serialize` crate, the `base64` crate, and the `base64` GNU
//! program:
//!
//! | Input      | `data-encoding` | `rustc`  | `base64` | GNU `base64`  |
//! | ---------- | --------------- | -------- | -------- | ------------- |
//! | `AAB=`     | `Trailing(2)`   | `[0, 0]` | `[0, 0]` | `\x00\x00`    |
//! | `AA\nB=`   | `Length(4)`     | `[0, 0]` | `Err(2)` | `\x00\x00`    |
//! | `AAB`      | `Length(0)`     | `[0, 0]` | `[0, 0]` | Invalid input |
//! | `A\rA\nB=` | `Length(4)`     | `[0, 0]` | `Err(1)` | Invalid input |
//! | `-_\r\n`   | `Symbol(0)`     | `[251]`  | `Err(0)` | Invalid input |
//! | `AA==AA==` | `Symbol(2)`     | `Err`    | `Err(2)` | `\x00\x00`    |
//!
//! We can summarize these discrepancies as follows:
//!
//! | Discrepancy | `data-encoding` | `rustc` | `base64` | GNU `base64` |
//! | ----------- | --------------- | ------- | -------- | ------------ |
//! | Non-zero trailing bits | No | Yes | Yes | Yes |
//! | Ignored characters | None | `\r` and `\n` | None | `\n` |
//! | Translated characters | None | `-_` mapped to `+/` | None | None |
//! | Padding is optional | No | Yes | Yes | No |
//! | Concatenated padded input | No | No | No | Yes |
//!
//! This crate permits to [ignore][trailing] non-zero trailing bits. It permits
//! to [translate] symbols. It permits to use [non-padded][`NoPad`] encodings.
//! And it also permits to [decode][decode_concat] concatenated padded inputs.
//! However, it does not permit to ignore characters. This has to be done in a
//! preprocessing stage, as it is done in the [binary]. Support in the library
//! may be added in future versions.
//!
//! # Migration
//!
//! The [changelog] describes the changes between v1 and v2. Here are the
//! migration steps for common usage:
//!
//! | v1                          | v2                          |
//! | --------------------------- | --------------------------- |
//! | `use data_encoding::baseNN` | `use data_encoding::BASENN` |
//! | `baseNN::function`          | `BASENN.method`             |
//! | `baseNN::function_nopad`    | `BASENN.no_pad().method`    |
//!
//! [`Builder`]: struct.Builder.html
//! [`NoPad`]: struct.NoPad.html
//! [`Padded`]: struct.Padded.html
//! [RFC4648]: https://tools.ietf.org/html/rfc4648
//! [base16]: constant.HEXUPPER.html
//! [base32]: constant.BASE32.html
//! [base32hex]: constant.BASE32HEX.html
//! [base64]: constant.BASE64.html
//! [base64url]: constant.BASE64URL.html
//! [binary]: https://crates.io/crates/data-encoding-bin
//! [canonical]: https://tools.ietf.org/html/rfc4648#section-3.5
//! [changelog]: https://github.com/ia0/data-encoding/blob/master/lib/CHANGELOG.md
//! [constants]: index.html#constants
//! [crate]: https://crates.io/crates/data-encoding
//! [decode_concat]: struct.Padded.html#method.decode_concat
//! [github]: https://github.com/ia0/data-encoding
//! [`no_pad`]: struct.Padded.html#method.no_pad
//! [trailing]: struct.Builder.html#method.ignore_trailing_bits
//! [translate]: struct.Builder.html#method.translate

#![warn(unused_results, missing_docs)]

/// Decoding error kind
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum DecodeKind {
    /// Invalid length
    Length,

    /// Invalid symbol
    Symbol,

    /// Non-zero trailing bits
    Trailing,

    /// Invalid padding length
    Padding,
}

/// Decoding error
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct DecodeError {
    /// Error position
    pub position: usize,

    /// Error kind
    pub kind: DecodeKind,
}
impl std::error::Error for DecodeError {
    fn description(&self) -> &str {
        match self.kind {
            DecodeKind::Length => "invalid length",
            DecodeKind::Symbol => "invalid symbol",
            DecodeKind::Trailing => "non-zero trailing bits",
            DecodeKind::Padding => "invalid padding length",
        }
    }
}
impl std::fmt::Display for DecodeError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        use std::error::Error;
        write!(f, "{} at {}", self.description(), self.position)
    }
}

macro_rules! check { ($e: expr, $c: expr) => { if !$c { return Err($e); } }; }

fn div_ceil(x: usize, m: usize) -> usize { (x + m - 1) / m }
fn floor(x: usize, m: usize) -> usize { x / m * m }

unsafe fn chunk_unchecked(x: &[u8], n: usize, i: usize) -> &[u8] {
    debug_assert!((i + 1) * n <= x.len());
    let ptr = x.as_ptr().offset((n * i) as isize);
    std::slice::from_raw_parts(ptr, n)
}
unsafe fn chunk_mut_unchecked(x: &mut [u8], n: usize, i: usize) -> &mut [u8] {
    debug_assert!((i + 1) * n <= x.len());
    let ptr = x.as_mut_ptr().offset((n * i) as isize);
    std::slice::from_raw_parts_mut(ptr, n)
}

trait Base: Copy {
    fn bit(&self) -> usize;
    fn msb(&self) -> bool;
}

macro_rules! make {
    ($val: expr, $msb: ident, $lsb: ident) => {
        #[derive(Copy, Clone)] struct $msb;
        impl Base for $msb {
            fn bit(&self) -> usize { $val }
            fn msb(&self) -> bool { true }
        }
        #[derive(Copy, Clone)] struct $lsb;
        impl Base for $lsb {
            fn bit(&self) -> usize { $val }
            fn msb(&self) -> bool { false }
        }
    };
}
make!(1, M1, L1);
make!(2, M2, L2);
make!(3, M3, L3);
make!(4, M4, L4);
make!(5, M5, L5);
make!(6, M6, L6);

macro_rules! dispatch {
    ($fun: ident; $bit: expr, $msb: expr, $($arg: expr),*) => {
        match ($bit, $msb) {
            (1, true) => $fun(M1, $($arg),*),
            (2, true) => $fun(M2, $($arg),*),
            (3, true) => $fun(M3, $($arg),*),
            (4, true) => $fun(M4, $($arg),*),
            (5, true) => $fun(M5, $($arg),*),
            (6, true) => $fun(M6, $($arg),*),
            (1, false) => $fun(L1, $($arg),*),
            (2, false) => $fun(L2, $($arg),*),
            (3, false) => $fun(L3, $($arg),*),
            (4, false) => $fun(L4, $($arg),*),
            (5, false) => $fun(L5, $($arg),*),
            (6, false) => $fun(L6, $($arg),*),
            _ => unreachable!(),
        }
    };
}

fn order(msb: bool, n: usize, i: usize) -> usize {
    if msb { n - 1 - i } else { i }
}
fn enc(bit: usize) -> usize {
    match bit {
        1 | 2 | 4 => 1,
        3 | 6 => 3,
        5 => 5,
        _ => unreachable!(),
    }
}
fn dec(bit: usize) -> usize { enc(bit) * 8 / bit }

fn encode_block<B: Base>(base: B, symbols: &[u8; 256], input: &[u8],
                         output: &mut [u8]) {
    let bit = base.bit();
    let msb = base.msb();
    let mut x = 0u64;
    for i in 0 .. input.len() {
        x |= (input[i] as u64) << 8 * order(msb, enc(bit), i);
    }
    for i in 0 .. output.len() {
        let y = x >> bit * order(msb, dec(bit), i);
        output[i] = symbols[y as usize % 256];
    }
}
fn encode_mut<B: Base>(base: B, symbols: &[u8; 256], input: &[u8],
                       output: &mut [u8]) {
    let enc = enc(base.bit());
    let dec = dec(base.bit());
    let n = input.len() / enc;
    for i in 0 .. n {
        let input = unsafe { chunk_unchecked(input, enc, i) };
        let output = unsafe { chunk_mut_unchecked(output, dec, i) };
        encode_block(base, symbols, input, output);
    }
    encode_block(base, symbols, &input[enc * n ..], &mut output[dec * n ..]);
}

fn decode_block<B: Base>(base: B, values: &[u8; 256], input: &[u8],
                         output: &mut [u8]) -> Result<(), usize> {
    let bit = base.bit();
    let msb = base.msb();
    let mut x = 0u64;
    for j in 0 .. input.len() {
        let y = values[input[j] as usize];
        check!(j, y < 1 << bit);
        x |= (y as u64) << bit * order(msb, dec(bit), j);
    }
    for j in 0 .. output.len() {
        output[j] = (x >> 8 * order(msb, enc(bit), j)) as u8;
    }
    Ok(())
}
fn decode_mut<B: Base>(base: B, values: &[u8; 256], input: &[u8],
                       output: &mut [u8]) -> Result<(), usize> {
    let enc = enc(base.bit());
    let dec = dec(base.bit());
    let n = input.len() / dec;
    for i in 0 .. n {
        let input = unsafe { chunk_unchecked(input, dec, i) };
        let output = unsafe { chunk_mut_unchecked(output, enc, i) };
        decode_block(base, values, input, output).map_err(|e| dec * i + e)?;
    }
    decode_block(base, values, &input[dec * n ..], &mut output[enc * n ..])
        .map_err(|e| dec * n + e)
}
fn check_trail<B: Base>(base: B, ctb: bool, values: &[u8; 256], input: &[u8])
                        -> Result<(), ()> {
    if !ctb { return Ok(()) }
    let trail = base.bit() * input.len() % 8;
    if trail == 0 { return Ok(()) }
    let mut mask = (1 << trail) - 1;
    if !base.msb() { mask <<= base.bit() - trail; }
    check!((), values[input[input.len() - 1] as usize] & mask == 0);
    Ok(())
}
fn check_pad<B: Base>(base: B, pad: u8, input: &[u8]) -> Result<usize, usize> {
    let bit = base.bit();
    debug_assert_eq!(input.len(), dec(bit));
    let count = input.iter().rev().take_while(|&x| *x == pad).count();
    let len = input.len() - count;
    check!(len, len > 0 && bit * len % 8 < bit);
    Ok(len)
}

macro_rules! make_array {
    ($name: ident, $len: expr) => {
        impl std::ops::Deref for $name {
            type Target = [u8; $len];
            fn deref(&self) -> &Self::Target { &self.0 }
        }
        impl std::ops::DerefMut for $name {
            fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 }
        }
        impl Clone for $name { fn clone(&self) -> Self { *self } }
        impl Copy for $name { }
        impl std::fmt::Debug for $name {
            fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
                <&[u8] as std::fmt::Debug>::fmt(&(&self.0 as &[u8]), f)
            }
        }
        impl PartialEq for $name {
            fn eq(&self, other: &Self) -> bool {
                &self.0 as &[u8] == &other.0 as &[u8]
            }
        }
        impl Eq for $name { }
    };
}

/// Convenience wrapper for `[u8; 128]`
///
/// Behaves as `[u8; 128]` through `Deref` and `DerefMut`, but also
/// implements `Clone` and other traits.
pub struct Array128([u8; 128]);
make_array!(Array128, 128);

struct Array256([u8; 256]);
make_array!(Array256, 256);

/// Order in which bits are read from a byte
///
/// # Examples
///
/// In the following example, we can see that a base with the
/// `MostSignificantFirst` bit-order has the most significant bit first in the
/// encoded output. In particular, the output is in the same order as the bits
/// in the byte. The opposite happens with the `LeastSignificantFirst`
/// bit-order. The least significant bit is first and the output is in the
/// reverse order.
///
/// ```rust
/// use data_encoding::Builder;
/// let mut builder = Builder::new(b"01");
/// let msb = builder.no_pad().unwrap();
/// let lsb = builder.least_significant_bit_first().no_pad().unwrap();
/// assert_eq!(msb.encode(&[0b01010011]), "01010011");
/// assert_eq!(lsb.encode(&[0b01010011]), "11001010");
/// ```
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum BitOrder {
    /// Most significant bit first
    ///
    /// This is the most common and most intuitive bit-order. In particular,
    /// this is the bit-order used by [RFC4648] and thus the usual hexadecimal,
    /// base64, base32, base64url, and base32hex encodings. This is the default
    /// bit-order when [building](struct.Builder.html) a base.
    ///
    /// [RFC4648]: https://tools.ietf.org/html/rfc4648
    MostSignificantFirst,

    /// Least significant bit first
    ///
    /// # Examples
    ///
    /// Here is how one would implement the [DNSCurve] base32 encoding:
    ///
    /// ```rust
    /// use data_encoding::Builder;
    /// let dns_curve = Builder::new(b"0123456789bcdfghjklmnpqrstuvwxyz")
    ///     .translate(b"BCDFGHJKLMNPQRSTUVWXYZ", b"bcdfghjklmnpqrstuvwxyz")
    ///     .least_significant_bit_first().no_pad().unwrap();
    /// assert_eq!(dns_curve.encode(&[0x64, 0x88]), "4321");
    /// assert_eq!(dns_curve.decode(b"4321").unwrap(), vec![0x64, 0x88]);
    /// ```
    ///
    /// [DNSCurve]: https://dnscurve.org/in-implement.html
    LeastSignificantFirst,
}
use BitOrder::*;

/// Base-conversion encoding (without padding)
///
/// # Theory
///
/// The main idea of a [base-conversion] encoding is to see `[u8]` as numbers
/// written in little-endian base256 and convert them in another little-endian
/// base. For performance reasons, this crate restricts this other base to be of
/// size 2 (binary), 4 (base4), 8 (octal), 16 (hexadecimal), 32 (base32), or 64
/// (base64). The converted number is written as `[u8]` although it doesn't use
/// all the 256 possible values of `u8`. This crate encodes to ASCII, so only
/// values smaller than 128 are allowed.
///
/// More precisely, we need the following elements:
///
/// - The bit-width N: 1 for binary, 2 for base4, 3 for octal, 4 for
/// hexadecimal, 5 for base32, and 6 for base64
/// - The [bit-order](enum.BitOrder.html): most or least significant bit first
/// - The symbols function S from [0, 2<sup>N</sup>) (called values and written
/// `uN`) to symbols (represented as `u8` although only ASCII symbols are
/// allowed, i.e. smaller than 128)
/// - The values partial function V from ASCII to [0, 2<sup>N</sup>), i.e. from
/// `u8` to `uN`
/// - Whether trailing bits are checked: trailing bits are leading zeros in
/// theory, but since numbers are little-endian they come last
///
/// For the encoding to be correct (i.e. encoding then decoding gives back the
/// initial input), V(S(i)) must be defined and equal to i for all i in [0,
/// 2<sup>N</sup>). For the encoding to be [canonical][canonical] (i.e.
/// different inputs decode to different outputs), trailing bits must be checked
/// and if V(i) is defined then S(V(i)) is equal to i for all i.
///
/// Encoding and decoding are given by the following pipeline:
///
/// ```text
/// [u8] <--1--> [[bit; 8]] <--2--> [[bit; N]] <--3--> [uN] <--4--> [u8]
/// 1: Map bit-order between each u8 and [bit; 8]
/// 2: Base conversion between base 2^8 and base 2^N (check trailing bits)
/// 3: Map bit-order between each [bit; N] and [uN]
/// 4: Map symbols/values between each uN and u8 (values must be defined)
/// ```
///
/// # Practice
///
/// ```rust
/// use data_encoding::Builder;
/// let binary = Builder::new(b"01").no_pad().unwrap();
/// let octal = Builder::new(b"01234567").no_pad().unwrap();
/// let hexadecimal = Builder::new(b"0123456789abcdef").no_pad().unwrap();
/// assert_eq!(binary.encode(b"Bit"), "010000100110100101110100");
/// assert_eq!(octal.encode(b"Bit"), "20464564");
/// assert_eq!(hexadecimal.encode(b"Bit"), "426974");
/// ```
///
/// The `binary` base has 2 symbols `0` and `1` with value 0 and 1 respectively.
/// The `octal` base has 8 symbols `0` to `7` with value 0 to 7. The
/// `hexadecimal` base has 16 symbols `0` to `9` and `a` to `f` with value 0 to
/// 15. The following diagram gives the idea of how encoding works in the
/// previous example (note that we can actually write such diagram only because
/// the bit-order is most significant first):
///
/// ```text
/// [      octal] |  2  :  0  :  4  :  6  :  4  :  5  :  6  :  4  |
/// [     binary] |0 1 0 0 0 0 1 0|0 1 1 0 1 0 0 1|0 1 1 1 0 1 0 0|
/// [hexadecimal] |   4   :   2   |   6   :   9   |   7   :   4   |
///                ^-- LSB                                       ^-- MSB
/// ```
///
/// Note that in theory, these little-endian numbers are read from right to left
/// (the most significant bit is at the right). Since leading zeros are
/// meaningless (in our usual decimal notation 0123 is the same as 123), it
/// explains why trailing bits must be zero. Trailing bits may occur when the
/// bit-width of a base does not divide 8. Only binary, base4, and hexadecimal
/// don't have trailing bits issues. So let's consider octal and base64, which
/// have trailing bits in similar circumstances:
///
/// ```rust
/// use data_encoding::{BASE64, Builder};
/// let octal = Builder::new(b"01234567").no_pad().unwrap();
/// assert_eq!(BASE64.no_pad().encode(b"B"), "Qg");
/// assert_eq!(octal.encode(b"B"), "204");
/// ```
///
/// We have the following diagram, where the base64 values are written between
/// parentheses:
///
/// ```text
/// [base64] |   Q(16)   :   g(32)   : [has 4 zero trailing bits]
/// [ octal] |  2  :  0  :  4  :       [has 1 zero trailing bit ]
///          |0 1 0 0 0 0 1 0|0 0 0 0
/// [ ascii] |       B       |
///                           ^-^-^-^-- leading zeros / trailing bits
/// ```
///
/// [base-conversion]: https://en.wikipedia.org/wiki/Positional_notation#Base_conversion
/// [canonical]: https://tools.ietf.org/html/rfc4648#section-3.5
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct NoPad {
    sym: Array256,
    val: Array256,
    bit: u8,
    msb: bool,
    ctb: bool,
}

impl NoPad {
    fn bit(&self) -> usize { self.bit as usize }

    /// Returns the encoded length of an input of length `len`
    ///
    /// See [`encode_mut`] for when to use it.
    ///
    /// [`encode_mut`]: struct.NoPad.html#method.encode_mut
    pub fn encode_len(&self, len: usize) -> usize {
        div_ceil(8 * len, self.bit())
    }

    /// Encodes `input` in `output`
    ///
    /// # Panics
    ///
    /// Panics if `output`'s length does not match the result of [`encode_len`]
    /// for `input`'s length.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use data_encoding::BASE64;
    /// # let mut buffer = vec![0; 100];
    /// # let base64 = BASE64.no_pad();
    /// # let input = b"Hello world";
    /// let output = &mut buffer[0 .. base64.encode_len(input.len())];
    /// base64.encode_mut(input, output);
    /// # assert_eq!(output, b"SGVsbG8gd29ybGQ");
    /// ```
    ///
    /// [`encode_len`]: struct.NoPad.html#method.encode_len
    pub fn encode_mut(&self, input: &[u8], output: &mut [u8]) {
        assert_eq!(output.len(), self.encode_len(input.len()));
        dispatch!(encode_mut; self.bit(), self.msb, &self.sym, input, output)
    }

    /// Returns encoded `input`
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// assert_eq!(BASE64.no_pad().encode(b"Hello world"), "SGVsbG8gd29ybGQ");
    /// ```
    pub fn encode(&self, input: &[u8]) -> String {
        let mut output = vec![0u8; self.encode_len(input.len())];
        self.encode_mut(input, &mut output);
        unsafe { String::from_utf8_unchecked(output) }
    }

    /// Returns the decoded length of an input of length `len`
    ///
    /// See [`decode_mut`] for when to use it.
    ///
    /// # Errors
    ///
    /// Returns an error if `len` is invalid. The error kind is [`Length`] and
    /// the error [position] is the greatest valid length smaller than `len`.
    ///
    /// [`decode_mut`]: struct.NoPad.html#method.decode_mut
    /// [`Length`]: enum.DecodeKind.html#variant.Length
    /// [position]: struct.DecodeError.html#structfield.position
    pub fn decode_len(&self, len: usize) -> Result<usize, DecodeError> {
        let bit = self.bit();
        let trail = bit * len % 8;
        check!(DecodeError { position: len - trail / bit,
                             kind: DecodeKind::Length }, trail < bit);
        Ok(bit * len / 8)
    }

    /// Decodes `input` in `output`
    ///
    /// # Panics
    ///
    /// Panics if `output`'s length does not match the result of [`decode_len`]
    /// for `input`'s length. Also panics if `decode_len` fails for `input`'s
    /// length.
    ///
    /// # Errors
    ///
    /// Returns an error if `input` is invalid. The error kind can be [`Symbol`]
    /// or [`Trailing`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use data_encoding::BASE64;
    /// # let mut buffer = vec![0; 100];
    /// # let base64 = BASE64.no_pad();
    /// # let input = b"SGVsbG8gd29ybGQ";
    /// let output = &mut buffer[0 .. base64.decode_len(input.len()).unwrap()];
    /// base64.decode_mut(input, output).unwrap();
    /// # assert_eq!(output, b"Hello world");
    /// ```
    ///
    /// [`decode_len`]: struct.NoPad.html#method.decode_len
    /// [`Symbol`]: enum.DecodeKind.html#variant.Symbol
    /// [`Trailing`]: enum.DecodeKind.html#variant.Trailing
    pub fn decode_mut(&self, input: &[u8], output: &mut [u8])
                      -> Result<(), DecodeError> {
        assert_eq!(output.len(), self.decode_len(input.len()).unwrap());
        dispatch!(decode_mut; self.bit(), self.msb, &self.val, input, output)
            .map_err(|pos| DecodeError { position: pos,
                                         kind: DecodeKind::Symbol })?;
        dispatch!(check_trail; self.bit(), self.msb, self.ctb, &self.val, input)
            .map_err(|()| DecodeError { position: input.len() - 1,
                                        kind: DecodeKind::Trailing })?;
        Ok(())
    }

    /// Returns decoded `input`
    ///
    /// # Errors
    ///
    /// Returns an error if `input` is invalid. The error kind can be
    /// [`Length`], [`Symbol`], or [`Trailing`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// assert_eq!(BASE64.no_pad().decode(b"SGVsbG8gd29ybGQ").unwrap(),
    ///            b"Hello world");
    /// ```
    ///
    /// [`Length`]: enum.DecodeKind.html#variant.Length
    /// [`Symbol`]: enum.DecodeKind.html#variant.Symbol
    /// [`Trailing`]: enum.DecodeKind.html#variant.Trailing
    pub fn decode(&self, input: &[u8]) -> Result<Vec<u8>, DecodeError> {
        let mut output = vec![0u8; self.decode_len(input.len())?];
        self.decode_mut(input, &mut output)?;
        Ok(output)
    }

    /// Returns the bit-width
    pub fn bit_width(&self) -> usize { self.bit() }

    /// Returns the bit-order
    pub fn bit_order(&self) -> BitOrder {
        if self.msb { MostSignificantFirst } else { LeastSignificantFirst }
    }

    /// Returns the symbols
    pub fn symbols(&self) -> &str {
        let symbols = &self.sym[0 .. 1 << self.bit()];
        unsafe { std::str::from_utf8_unchecked(symbols) }
    }

    /// Returns the non-canonical symbols
    ///
    /// Non-canonical symbols are ASCII characters i for which V(i) is defined
    /// but S(V(i)) is different from i. In other words, these characters cannot
    /// be produced by the encoding function but are still recognized by the
    /// decoding function and behave as the canonical symbol of the same value.
    ///
    /// The result `(from, to)` has the following properties:
    ///
    /// - `from` and `to` are ASCII and have the same length
    /// - All non-canonical symbols are listed in `from` in ascending order
    /// - `from[i]` is a non-canonical symbol that behaves as `to[i]` for all i
    ///
    /// # Examples
    ///
    /// ```rust
    /// let (from, to) = data_encoding::HEXLOWER_PERMISSIVE.translate();
    /// assert_eq!((from.as_str(), to.as_str()), ("ABCDEF", "abcdef"));
    /// ```
    pub fn translate(&self) -> (String, String) {
        let mut from = vec![];
        let mut to = vec![];
        for i in 0 .. 128 {
            if self.val[i] == 128 { continue; }
            let canonical = self.sym[self.val[i] as usize];
            if i as u8 == canonical { continue; }
            from.push(i as u8);
            to.push(canonical);
        }
        let from = unsafe { String::from_utf8_unchecked(from) };
        let to = unsafe { String::from_utf8_unchecked(to) };
        (from, to)
    }

    /// Whether trailing bits are checked
    ///
    /// Returns `None` for bases that don't need to check trailing bits (like
    /// base2, base4, and base16). Otherwise, for bases that would need it (like
    /// base8, base32, and base64), returns whether trailing bits are checked.
    pub fn check_trailing_bits(&self) -> Option<bool> {
        if 8 % self.bit() == 0 { None } else { Some(self.ctb) }
    }
}

/// Padded base-conversion encoding
///
/// The padded encoding extends the [base-conversion] encoding. This is only
/// useful for octal, base32, and base64. And for those bases, it is only useful
/// if the length of the data to encode is not known in advance.
///
/// # Theory
///
/// Bases for which the bit-width N does not divide 8 may not concatenate
/// encoded data. This comes from the fact that it is not possible to make the
/// difference between trailing bits and encoding bits. Padding solves this
/// issue by adding a new character (which is not a symbol) to discriminate
/// between trailing bits and encoding bits. The idea is to work by blocks of
/// lcm(8, N) bits, where lcm(8, N) is the least common multiple of 8 and N.
/// When such block is not complete, it is padded.
///
/// # Practice
///
/// For octal and base64, lcm(8, 3) == lcm(8, 6) == 24 bits or 3 bytes. For
/// base32, lcm(8, 5) is 40 bits or 5 bytes. Let's consider octal and base64:
///
/// ```rust
/// use data_encoding::{BASE64, Builder};
/// let octal = Builder::new(b"01234567").pad(b'=').padded().unwrap();
/// // We start encoding but we only have "B" for now.
/// assert_eq!(BASE64.encode(b"B"), "Qg==");
/// assert_eq!(octal.encode(b"B"), "204=====");
/// // Now we have "it".
/// assert_eq!(BASE64.encode(b"it"), "aXQ=");
/// assert_eq!(octal.encode(b"it"), "322720==");
/// // By concatenating everything, we may decode the original data.
/// assert_eq!(BASE64.decode_concat(b"Qg==aXQ=").unwrap(), b"Bit");
/// assert_eq!(octal.decode_concat(b"204=====322720==").unwrap(), b"Bit");
/// ```
///
/// We have the following diagrams:
///
/// ```text
/// [base64] |   Q(16)   :   g(32)   :     =     :     =     |
/// [ octal] |  2  :  0  :  4  :  =  :  =  :  =  :  =  :  =  |
///          |0 1 0 0 0 0 1 0|. . . . . . . .|. . . . . . . .|
/// [ ascii] |       B       |        end of block aligned --^
///          ^-- beginning of block aligned
///
/// [base64] |   a(26)   :   X(23)   :   Q(16)   :     =     |
/// [ octal] |  3  :  2  :  2  :  7  :  2  :  0  :  =  :  =  |
///          |0 1 1 0 1 0 0 1|0 1 1 1 0 1 0 0|. . . . . . . .|
/// [ ascii] |       i       |       t       |
/// ```
///
/// [base-conversion]: struct.NoPad.html
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Padded {
    no_pad: NoPad,
    pad: u8,
}

impl Padded {
    /// Returns the encoded length of an input of length `len`
    ///
    /// See [`encode_mut`] for when to use it.
    ///
    /// [`encode_mut`]: struct.Padded.html#method.encode_mut
    pub fn encode_len(&self, len: usize) -> usize {
        let bit = self.no_pad.bit();
        div_ceil(len, enc(bit)) * dec(bit)
    }

    /// Encodes `input` in `output`.
    ///
    /// # Panics
    ///
    /// Panics if `output`'s length does not match the result of [`encode_len`]
    /// for `input`'s length.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// # let mut buffer = vec![0; 100];
    /// let input = b"Hello world";
    /// let output = &mut buffer[0 .. BASE64.encode_len(input.len())];
    /// BASE64.encode_mut(input, output);
    /// assert_eq!(output, b"SGVsbG8gd29ybGQ=");
    /// ```
    ///
    /// [`encode_len`]: struct.Padded.html#method.encode_len
    pub fn encode_mut(&self, input: &[u8], output: &mut [u8]) {
        assert_eq!(output.len(), self.encode_len(input.len()));
        let last = self.no_pad.encode_len(input.len());
        self.no_pad.encode_mut(input, &mut output[0 .. last]);
        for i in output[last ..].iter_mut() {
            *i = self.pad;
        }
    }

    /// Returns encoded `input`
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// assert_eq!(BASE64.encode(b"Hello world"), "SGVsbG8gd29ybGQ=");
    /// ```
    pub fn encode(&self, input: &[u8]) -> String {
        let mut output = vec![0u8; self.encode_len(input.len())];
        self.encode_mut(input, &mut output);
        unsafe { String::from_utf8_unchecked(output) }
    }

    /// Returns the decoded length of an input of length `len`
    ///
    /// See [`decode_mut`] for when to use it.
    ///
    /// # Errors
    ///
    /// Returns an error if `len` is invalid. The error kind is [`Length`] and
    /// the error [position] is the greatest valid length smaller than `len`.
    ///
    /// [`decode_mut`]: struct.Padded.html#method.decode_mut
    /// [`Length`]: enum.DecodeKind.html#variant.Length
    /// [position]: struct.DecodeError.html#structfield.position
    pub fn decode_len(&self, len: usize) -> Result<usize, DecodeError> {
        let bit = self.no_pad.bit();
        check!(DecodeError { position: floor(len, dec(bit)),
                             kind: DecodeKind::Length },
               len % dec(bit) == 0);
        Ok(len / dec(bit) * enc(bit))
    }

    /// Decodes `input` in `output`
    ///
    /// Returns the length of the decoded output. This length may be smaller
    /// than output's length if the input is padded. The output bytes after the
    /// returned length are not initialized and should not be read.
    ///
    /// # Panics
    ///
    /// Panics if `output`'s length does not match the result of [`decode_len`]
    /// for `input`'s length. Also panics if `decode_len` fails for `input`'s
    /// length.
    ///
    /// # Errors
    ///
    /// Returns an error if `input` is invalid. The error kind can be
    /// [`Symbol`], [`Trailing`], or [`Padding`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// # let mut buffer = vec![0; 100];
    /// let input = b"SGVsbG8gd29ybGQ=";
    /// let output = &mut buffer[0 .. BASE64.decode_len(input.len()).unwrap()];
    /// let len = BASE64.decode_mut(input, output).unwrap();
    /// assert_eq!(&output[0 .. len], b"Hello world");
    /// ```
    ///
    /// [`decode_len`]: struct.Padded.html#method.decode_len
    /// [`Symbol`]: enum.DecodeKind.html#variant.Symbol
    /// [`Trailing`]: enum.DecodeKind.html#variant.Trailing
    /// [`Padding`]: enum.DecodeKind.html#variant.Padding
    pub fn decode_mut(&self, input: &[u8], output: &mut [u8])
                      -> Result<usize, DecodeError> {
        if input.len() == 0 { return Ok(0); }
        assert_eq!(output.len(), self.decode_len(input.len()).unwrap());
        let dec = dec(self.no_pad.bit());
        let ilen = input.len() - dec;
        let irem = dispatch!(check_pad; self.no_pad.bit(), self.no_pad.msb,
                             self.pad, &input[ilen ..])
            .map_err(|e| DecodeError { position: ilen + e,
                                       kind: DecodeKind::Padding })?;
        let olen = self.no_pad.decode_len(ilen + irem).unwrap();
        self.no_pad.decode_mut(&input[.. ilen + irem], &mut output[.. olen])?;
        Ok(olen)
    }

    /// Returns decoded `input`
    ///
    /// # Errors
    ///
    /// Returns an error if `input` is invalid. The error kind can be
    /// [`Length`], [`Symbol`], [`Trailing`], or [`Padding`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// assert_eq!(BASE64.decode(b"SGVsbG8gd29ybGQ=").unwrap(), b"Hello world");
    /// ```
    ///
    /// [`Length`]: enum.DecodeKind.html#variant.Length
    /// [`Symbol`]: enum.DecodeKind.html#variant.Symbol
    /// [`Trailing`]: enum.DecodeKind.html#variant.Trailing
    /// [`Padding`]: enum.DecodeKind.html#variant.Padding
    pub fn decode(&self, input: &[u8]) -> Result<Vec<u8>, DecodeError> {
        let mut output = vec![0u8; self.decode_len(input.len())?];
        let len = self.decode_mut(input, &mut output)?;
        output.truncate(len);
        Ok(output)
    }

    /// Decodes concatenated `input` in `output`
    ///
    /// Returns the length of the decoded output. This length may be smaller
    /// than output's length if the input contained padding. The output bytes
    /// after the returned length are not initialized and should not be read.
    ///
    /// # Panics
    ///
    /// Panics if `output`'s length does not match the result of [`decode_len`]
    /// for `input`'s length. Also panics if `decode_len` fails for `input`'s
    /// length.
    ///
    /// # Errors
    ///
    /// Returns an error if `input` is invalid. The error kind can be
    /// [`Symbol`], [`Trailing`], or [`Padding`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// # let mut buffer = vec![0; 100];
    /// let input = b"SGVsbA==byB3b3JsZA==";
    /// let output = &mut buffer[0 .. BASE64.decode_len(input.len()).unwrap()];
    /// let len = BASE64.decode_concat_mut(input, output).unwrap();
    /// assert_eq!(&output[0 .. len], b"Hello world");
    /// ```
    ///
    /// [`decode_len`]: struct.Padded.html#method.decode_len
    /// [`Symbol`]: enum.DecodeKind.html#variant.Symbol
    /// [`Trailing`]: enum.DecodeKind.html#variant.Trailing
    /// [`Padding`]: enum.DecodeKind.html#variant.Padding
    pub fn decode_concat_mut(&self, input: &[u8], output: &mut [u8])
                             -> Result<usize, DecodeError> {
        assert_eq!(output.len(), self.decode_len(input.len()).unwrap());
        let bit = self.no_pad.bit();
        let enc = enc(bit);
        let dec = dec(bit);
        let mut inpos = 0;
        let mut outpos = 0;
        let mut outend = output.len();
        while inpos < input.len() {
            let ret = self.no_pad.decode_mut(
                &input[inpos ..], &mut output[outpos .. outend]);
            match ret {
                Ok(()) => break,
                Err(err) => {
                    debug_assert_eq!(err.kind, DecodeKind::Symbol);
                    inpos += err.position / dec * dec;
                    outpos += err.position / dec * enc;
                },
            }
            let inlen = dispatch!(check_pad; self.no_pad.bit(), self.no_pad.msb,
                                  self.pad, &input[inpos .. inpos + dec])
                .map_err(|e| DecodeError { position: inpos + e,
                                           kind: DecodeKind::Padding })?;
            let outlen = self.no_pad.decode_len(inlen).unwrap();
            self.no_pad.decode_mut(&input[inpos .. inpos + inlen],
                                   &mut output[outpos .. outpos + outlen])
                .map_err(|mut e| { e.position += inpos; e })?;
            inpos += dec;
            outpos += outlen;
            outend -= enc - outlen;
        }
        Ok(outend)
    }

    /// Returns decoded concatenated `input`
    ///
    /// # Errors
    ///
    /// Returns an error if `input` is invalid. The error kind can be
    /// [`Length`], [`Symbol`], [`Trailing`], or [`Padding`].
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// assert_eq!(BASE64.decode_concat(b"SGVsbA==byB3b3JsZA==").unwrap(),
    ///            b"Hello world");
    /// ```
    ///
    /// [`Length`]: enum.DecodeKind.html#variant.Length
    /// [`Symbol`]: enum.DecodeKind.html#variant.Symbol
    /// [`Trailing`]: enum.DecodeKind.html#variant.Trailing
    /// [`Padding`]: enum.DecodeKind.html#variant.Padding
    pub fn decode_concat(&self, input: &[u8]) -> Result<Vec<u8>, DecodeError> {
        let mut output = vec![0u8; self.decode_len(input.len())?];
        let len = self.decode_concat_mut(input, &mut output)?;
        output.truncate(len);
        Ok(output)
    }

    /// Returns the associated base-conversion encoding
    ///
    /// # Examples
    ///
    /// ```rust
    /// use data_encoding::BASE64;
    /// assert_eq!(BASE64.encode(b"Helo"), "SGVsbw==");
    /// assert_eq!(BASE64.no_pad().encode(b"Helo"), "SGVsbw");
    /// ```
    pub fn no_pad(&self) -> &NoPad { &self.no_pad }

    /// Returns the padding character
    pub fn padding(&self) -> u8 { self.pad }
}

/// Base representation
///
/// Convenience methods are provided to edit the fields, although they may be
/// manually edited.
///
/// # Examples
///
/// See the [lower-case hexadecimal][1], [upper-case hexadecimal][2],
/// [lower-case permissive hexadecimal][3], [base32], [base32hex], [base64], and
/// [base64url] encodings.
///
/// [1]: constant.HEXLOWER.html
/// [2]: constant.HEXUPPER.html
/// [3]: constant.HEXLOWER_PERMISSIVE.html
/// [base32]: constant.BASE32.html
/// [base32hex]: constant.BASE32HEX.html
/// [base64]: constant.BASE64.html
/// [base64url]: constant.BASE64URL.html
#[derive(Debug, Clone)]
pub struct Builder {
    /// Symbols
    ///
    /// The number of symbols must be 2, 4, 8, 16, 32, or 64. Symbols must be
    /// ASCII characters (smaller than 128) and they must be unique.
    pub symbols: Box<[u8]>,

    /// Values
    ///
    /// A value of 128 means that the index is not a symbol. In other words, if
    /// `values[s] != 128` then `s` is a symbol (canonical if
    /// `symbols[values[s]]` is equal to `s`) and `values[s]` is its value.
    ///
    /// Default is the inverse of symbols.
    pub values: Box<Array128>,

    /// Bit-order
    ///
    /// Default is most significant bit first.
    pub bit_order: BitOrder,

    /// Padding
    ///
    /// Default is no padding.
    pub padding: Option<u8>,

    /// Whether trailing bits are checked
    ///
    /// Default is to check trailing bits. This field is ignored when
    /// unnecessary (i.e. for base2, base4, and base16).
    pub check_trailing_bits: bool,
}

#[derive(Debug, Copy, Clone)]
enum BuilderErrorImpl {
    BadSize,
    BadSym(u8),
    BadVal(u8),
    BadPad(Option<u8>),
}
use BuilderErrorImpl::*;

/// Base building error
#[derive(Debug, Copy, Clone)]
pub struct BuilderError(BuilderErrorImpl);

impl std::fmt::Display for BuilderError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self.0 {
            BadSize => write!(f, "Invalid number of symbols"),
            BadSym(s) => write!(f, "Non-ascii symbol {:#x}", s),
            BadVal(s) => write!(f, "Invalid value for {:?}", s as char),
            BadPad(Some(s)) if s < 128 => write!(f, "Padding symbol conflict"),
            BadPad(Some(pad)) => write!(f, "Non-ascii padding {:#x}", pad),
            BadPad(None) => write!(f, "Unnecessary or missing padding"),
        }
    }
}

impl std::error::Error for BuilderError {
    fn description(&self) -> &str {
        match self.0 {
            BadSize => "invalid number of symbols",
            BadSym(_) => "non-ascii symbol",
            BadVal(_) => "invalid value",
            BadPad(Some(s)) if s < 128 => "padding symbol conflict",
            BadPad(Some(_)) => "non-ascii padding",
            BadPad(None) => "unnecessary or missing padding",
        }
    }
}

impl Builder {
    fn bit(&self) -> Result<u8, BuilderError> {
        match self.symbols.len() {
            2 => Ok(1),
            4 => Ok(2),
            8 => Ok(3),
            16 => Ok(4),
            32 => Ok(5),
            64 => Ok(6),
            _ => Err(BuilderError(BadSize)),
        }
    }

    fn check(&self) -> Result<(), BuilderError> {
        let bit = self.bit()?;
        let even = 8 % bit == 0;
        check!(BuilderError(BadPad(None)), self.padding.is_none() || !even);
        for v in 0 .. self.symbols.len() {
            let s = self.symbols[v];
            check!(BuilderError(BadSym(s)), s < 128);
            check!(BuilderError(BadVal(s)), self.values[s as usize] == v as u8);
        }
        for s in 0 .. self.values.len() {
            if self.values[s] == 128 { continue; }
            check!(BuilderError(BadVal(s as u8)), self.values[s] < 1 << bit);
        }
        if let Some(pad) = self.padding {
            check!(BuilderError(BadPad(Some(pad))), pad < 128);
            for s in 0 .. self.values.len() {
                if self.values[s] == 128 { continue; }
                check!(BuilderError(BadPad(Some(pad))), pad != s as u8);
            }
        }
        Ok(())
    }

    fn no_pad_unchecked(&self) -> NoPad {
        let bit = self.bit().unwrap();
        let mut base = NoPad {
            sym: Array256([0; 256]), val: Array256([128; 256]), bit: bit,
            msb: self.bit_order == MostSignificantFirst,
            ctb: 8 % bit != 0 && self.check_trailing_bits,
        };
        for i in 0 .. base.sym.len() {
            base.sym[i] = self.symbols[i % self.symbols.len()];
        }
        for i in 0 .. self.values.len() {
            base.val[i] = self.values[i];
        }
        base
    }

    /// Returns a canonical base representation for `symbols`
    ///
    /// By default, the base representation does not have non-canonical symbols.
    /// It does not have padding. It is most significant bit first. And it
    /// checks the trailing bits if necessary.
    ///
    /// # Errors
    ///
    /// Errors are silently ignored. In other words, if a symbol is not ASCII,
    /// if there are duplicate symbols, or if the number of symbols is not a
    /// power of 2 smaller than 128, then no errors are signaled. However, when
    /// building the base with [`no_pad`] or [`padded`], if the base
    /// representation is still invalid, an error will be returned.
    ///
    /// [`no_pad`]: struct.Builder.html#method.no_pad
    /// [`padded`]: struct.Builder.html#method.padded
    pub fn new(symbols: &[u8]) -> Builder {
        let mut builder = Builder {
            symbols: symbols.to_vec().into_boxed_slice(),
            values: Box::new(Array128([128; 128])),
            bit_order: MostSignificantFirst,
            padding: None,
            check_trailing_bits: true,
        };
        for v in 0 .. symbols.len() {
            if symbols[v] >= 128 { continue; }
            builder.values[symbols[v] as usize] = v as u8;
        }
        builder
    }

    /// Sets padding
    pub fn pad(&mut self, pad: u8) -> &mut Builder {
        self.padding = Some(pad);
        self
    }

    /// Adds non-canonical symbols
    ///
    /// For all i, `from[i]` is given the same value as `to[i]`.
    ///
    /// By default there are only canonical symbols. Non-canonical symbols
    /// cannot be produced by encoding functions, but they are recognized by
    /// decoding functions. They behave as the canonical symbol of the same
    /// value.
    ///
    /// # Panics
    ///
    /// Panics if `from` and `to` don't have the same length.
    ///
    /// # Errors
    ///
    /// Errors are silently ignored. If a character in `from` or `to` is not
    /// ASCII then the pair is skipped. If the character in `from` is already a
    /// symbol it is overwritten. If the character in `to` is not a symbol,
    /// `from` is reset.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use data_encoding::Builder;
    /// let base = Builder::new(b"0123456789abcdef")
    ///     .translate(b"ABCDEF", b"abcdef").no_pad().unwrap();
    /// assert_eq!(base.decode(b"Bb").unwrap(), vec![0xbb]);
    /// ```
    pub fn translate(&mut self, from: &[u8], to: &[u8]) -> &mut Builder {
        assert_eq!(from.len(), to.len());
        for i in 0 .. from.len() {
            if from[i] >= 128 || to[i] >= 128 { continue; }
            self.values[from[i] as usize] = self.values[to[i] as usize];
        }
        self
    }

    /// Sets bit-order to least significant bit first
    pub fn least_significant_bit_first(&mut self) -> &mut Builder {
        self.bit_order = LeastSignificantFirst;
        self
    }

    /// Ignores trailing bits
    pub fn ignore_trailing_bits(&mut self) -> &mut Builder {
        self.check_trailing_bits = false;
        self
    }

    /// Returns the represented base-conversion encoding
    ///
    /// # Errors
    ///
    /// Returns an error if the base representation is invalid.
    pub fn no_pad(&self) -> Result<NoPad, BuilderError> {
        check!(BuilderError(BadPad(None)), self.padding.is_none());
        self.check()?;
        Ok(self.no_pad_unchecked())
    }

    /// Returns the represented padded base-conversion encoding
    ///
    /// # Errors
    ///
    /// Returns an error if the base representation is invalid.
    pub fn padded(&self) -> Result<Padded, BuilderError> {
        let pad = self.padding.ok_or(BuilderError(BadPad(None)))?;
        self.check()?;
        Ok(Padded { no_pad: self.no_pad_unchecked(), pad: pad })
    }
}

impl<'a> From<&'a NoPad> for Builder {
    fn from(no_pad: &NoPad) -> Builder {
        let mut builder = Builder {
            symbols: no_pad.symbols().as_bytes().to_vec().into_boxed_slice(),
            values: Box::new(Array128([0; 128])),
            bit_order: no_pad.bit_order(),
            padding: None,
            check_trailing_bits: no_pad.ctb,
        };
        builder.values.copy_from_slice(&no_pad.val[0 .. 128]);
        builder
    }
}

impl<'a> From<&'a Padded> for Builder {
    fn from(padded: &Padded) -> Builder {
        let mut builder = Builder::from(&padded.no_pad);
        builder.padding = Some(padded.pad);
        builder
    }
}

const X_: u8 = 128;
macro_rules! make_val {
    ($($v: expr),*) => { [
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        $($v),*,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
        ] };
}
macro_rules! make_sym {
    (7; $($s: expr),*) => { [ $($s),*, $($s),*, ] };
    (6; $($s: expr),*) => { make_sym!(7; $($s),*, $($s),*) };
    (5; $($s: expr),*) => { make_sym!(6; $($s),*, $($s),*) };
    (4; $($s: expr),*) => { make_sym!(5; $($s),*, $($s),*) };
}
macro_rules! make_base {
    ($b: tt; $($v: expr),*; $($s: expr),*;) => {
        NoPad {
            sym: Array256(make_sym!($b; $($s),*)),
            val: Array256(make_val!($($v),*)),
            bit: $b,
            msb: true,
            ctb: 8 % $b != 0,
        }
    };
    ($p: expr; $b: tt; $($v: expr),*; $($s: expr),*;) => {
        Padded {
            no_pad: make_base!($b; $($v),*; $($s),*;),
            pad: $p,
        }
    };
}

/// Lower-case hexadecimal encoding
///
/// This encoding is a static version of:
///
/// ```rust
/// # use data_encoding::{Builder, HEXLOWER};
/// assert_eq!(HEXLOWER, &Builder::new(b"0123456789abcdef").no_pad().unwrap());
/// ```
///
/// # Examples
///
/// ```rust
/// use data_encoding::HEXLOWER;
/// let deadbeef = vec![0xde, 0xad, 0xbe, 0xef];
/// assert_eq!(HEXLOWER.decode(b"deadbeef").unwrap(), deadbeef);
/// assert_eq!(HEXLOWER.encode(&deadbeef), "deadbeef");
/// ```
pub const HEXLOWER: &'static NoPad = HEXLOWER_IMPL;
const HEXLOWER_IMPL: &'static NoPad = &make_base!{
    4;
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, 10, 11, 12, 13, 14, 15, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_;
    b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7',
    b'8', b'9', b'a', b'b', b'c', b'd', b'e', b'f';
};

/// RFC4648 hex encoding (upper-case hexadecimal encoding)
///
/// This encoding is a static version of:
///
/// ```rust
/// # use data_encoding::{Builder, HEXUPPER};
/// assert_eq!(HEXUPPER, &Builder::new(b"0123456789ABCDEF").no_pad().unwrap());
/// ```
///
/// It is compliant with [RFC4648] and known as "base16" or "hex".
///
/// # Examples
///
/// ```rust
/// use data_encoding::HEXUPPER;
/// let deadbeef = vec![0xde, 0xad, 0xbe, 0xef];
/// assert_eq!(HEXUPPER.decode(b"DEADBEEF").unwrap(), deadbeef);
/// assert_eq!(HEXUPPER.encode(&deadbeef), "DEADBEEF");
/// ```
///
/// [RFC4648]: https://tools.ietf.org/html/rfc4648#section-8
pub const HEXUPPER: &'static NoPad = HEXUPPER_IMPL;
const HEXUPPER_IMPL: &'static NoPad = &make_base!{
    4;
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , X_, X_, X_, X_, X_, X_,
    X_, 10, 11, 12, 13, 14, 15, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_;
    b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7',
    b'8', b'9', b'A', b'B', b'C', b'D', b'E', b'F';
};

/// Lower-case permissive hexadecimal encoding
///
/// This encoding is a static version of:
///
/// ```rust
/// # use data_encoding::{Builder, HEXLOWER_PERMISSIVE};
/// let mut base = Builder::new(b"0123456789abcdef")
///     .translate(b"ABCDEF", b"abcdef").no_pad().unwrap();
/// assert_eq!(HEXLOWER_PERMISSIVE, &base);
/// ```
///
/// # Examples
///
/// ```rust
/// use data_encoding::HEXLOWER_PERMISSIVE;
/// let deadbeef = vec![0xde, 0xad, 0xbe, 0xef];
/// assert_eq!(HEXLOWER_PERMISSIVE.decode(b"DeadBeef").unwrap(), deadbeef);
/// assert_eq!(HEXLOWER_PERMISSIVE.encode(&deadbeef), "deadbeef");
/// ```
///
/// You can also define a shorter name:
///
/// ```rust
/// use data_encoding::{HEXLOWER_PERMISSIVE, NoPad};
/// const HEX: &'static NoPad = HEXLOWER_PERMISSIVE;
/// ```
pub const HEXLOWER_PERMISSIVE: &'static NoPad = HEXLOWER_PERMISSIVE_IMPL;
const HEXLOWER_PERMISSIVE_IMPL: &'static NoPad = &make_base!{
    4;
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , X_, X_, X_, X_, X_, X_,
    X_, 10, 11, 12, 13, 14, 15, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, 10, 11, 12, 13, 14, 15, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_;
    b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7',
    b'8', b'9', b'a', b'b', b'c', b'd', b'e', b'f';
};

/// RFC4648 base32 encoding
///
/// This encoding is a static version of:
///
/// ```rust
/// # use data_encoding::{Builder, BASE32};
/// assert_eq!(BASE32, &Builder::new(b"ABCDEFGHIJKLMNOPQRSTUVWXYZ234567")
///                        .pad(b'=').padded().unwrap());
/// ```
///
/// It is conformant with [RFC4648].
///
/// [RFC4648]: https://tools.ietf.org/html/rfc4648#section-6
pub const BASE32: &'static Padded = BASE32_IMPL;
const BASE32_IMPL: &'static Padded = &make_base!{
    b'='; 5;
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, 26, 27, 28, 29, 30, 31, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, 0_, 1_, 2_, 3_, 4_, 5_, 6_, 7_, 8_, 9_, 10, 11, 12, 13, 14,
    15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_;
    b'A', b'B', b'C', b'D', b'E', b'F', b'G', b'H',
    b'I', b'J', b'K', b'L', b'M', b'N', b'O', b'P',
    b'Q', b'R', b'S', b'T', b'U', b'V', b'W', b'X',
    b'Y', b'Z', b'2', b'3', b'4', b'5', b'6', b'7';
};

/// RFC4648 base32hex encoding
///
/// This encoding is a static version of:
///
/// ```rust
/// # use data_encoding::{Builder, BASE32HEX};
/// assert_eq!(BASE32HEX, &Builder::new(b"0123456789ABCDEFGHIJKLMNOPQRSTUV")
///                          .pad(b'=').padded().unwrap());
/// ```
///
/// It is conformant with [RFC4648].
///
/// [RFC4648]: https://tools.ietf.org/html/rfc4648#section-7
pub const BASE32HEX: &'static Padded = BASE32HEX_IMPL;
const BASE32HEX_IMPL: &'static Padded = &make_base!{
    b'='; 5;
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    0_, 1_, 2_, 3_, 4_, 5_, 6_, 7_, 8_, 9_, X_, X_, X_, X_, X_, X_,
    X_, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
    25, 26, 27, 28, 29, 30, 31, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_,
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_;
    b'0', b'1', b'2', b'3', b'4', b'5', b'6', b'7',
    b'8', b'9', b'A', b'B', b'C', b'D', b'E', b'F',
    b'G', b'H', b'I', b'J', b'K', b'L', b'M', b'N',
    b'O', b'P', b'Q', b'R', b'S', b'T', b'U', b'V';
};

/// RFC4648 base64 encoding
///
/// This encoding is a static version of:
///
/// ```rust
/// # use data_encoding::{Builder, BASE64};
/// assert_eq!(BASE64, &Builder::new(
///     b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/")
///         .pad(b'=').padded().unwrap());
/// ```
///
/// It is conformant with [RFC4648].
///
/// [RFC4648]: https://tools.ietf.org/html/rfc4648#section-4
pub const BASE64: &'static Padded = BASE64_IMPL;
const BASE64_IMPL: &'static Padded = &make_base!{
    b'='; 6;
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, 62, X_, X_, X_, 63,
    52, 53, 54, 55, 56, 57, 58, 59, 60, 61, X_, X_, X_, X_, X_, X_,
    X_, 0_, 1_, 2_, 3_, 4_, 5_, 6_, 7_, 8_, 9_, 10, 11, 12, 13, 14,
    15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, X_, X_, X_, X_, X_,
    X_, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
    41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, X_, X_, X_, X_, X_;
    b'A', b'B', b'C', b'D', b'E', b'F', b'G', b'H',
    b'I', b'J', b'K', b'L', b'M', b'N', b'O', b'P',
    b'Q', b'R', b'S', b'T', b'U', b'V', b'W', b'X',
    b'Y', b'Z', b'a', b'b', b'c', b'd', b'e', b'f',
    b'g', b'h', b'i', b'j', b'k', b'l', b'm', b'n',
    b'o', b'p', b'q', b'r', b's', b't', b'u', b'v',
    b'w', b'x', b'y', b'z', b'0', b'1', b'2', b'3',
    b'4', b'5', b'6', b'7', b'8', b'9', b'+', b'/';
};

/// RFC4648 base64url encoding
///
/// This encoding is a static version of:
///
/// ```rust
/// # use data_encoding::{Builder, BASE64URL};
/// assert_eq!(BASE64URL, &Builder::new(
///     b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_")
///         .pad(b'=').padded().unwrap());
/// ```
///
/// It is conformant with [RFC4648].
///
/// [RFC4648]: https://tools.ietf.org/html/rfc4648#section-5
pub const BASE64URL: &'static Padded = BASE64URL_IMPL;
const BASE64URL_IMPL: &'static Padded = &make_base!{
    b'='; 6;
    X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, X_, 62, X_, X_,
    52, 53, 54, 55, 56, 57, 58, 59, 60, 61, X_, X_, X_, X_, X_, X_,
    X_, 0_, 1_, 2_, 3_, 4_, 5_, 6_, 7_, 8_, 9_, 10, 11, 12, 13, 14,
    15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, X_, X_, X_, X_, 63,
    X_, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
    41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, X_, X_, X_, X_, X_;
    b'A', b'B', b'C', b'D', b'E', b'F', b'G', b'H',
    b'I', b'J', b'K', b'L', b'M', b'N', b'O', b'P',
    b'Q', b'R', b'S', b'T', b'U', b'V', b'W', b'X',
    b'Y', b'Z', b'a', b'b', b'c', b'd', b'e', b'f',
    b'g', b'h', b'i', b'j', b'k', b'l', b'm', b'n',
    b'o', b'p', b'q', b'r', b's', b't', b'u', b'v',
    b'w', b'x', b'y', b'z', b'0', b'1', b'2', b'3',
    b'4', b'5', b'6', b'7', b'8', b'9', b'-', b'_';
};