1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
//! This crate defines a buffer data structure optimized to be written to and read from standard
//! `Vec`s. `DataBuffer` is particularly useful when dealing with data whose type is determined at
//! run time.  Note that data is stored in the underlying byte buffers in native endian form, thus
//! requesting typed data from a buffer on a platform with different endianness is unsafe.
//!
//! # Caveats
//!
//! `DataBuffer` doesn't support zero-sized types.

pub use reinterpret;

use std::{
    any::{Any, TypeId},
    mem::size_of,
    slice,
};

#[cfg(feature = "numeric")]
use std::fmt;

#[cfg(feature = "numeric")]
use num_traits::{cast, NumCast, Zero};

pub mod macros;

#[cfg(feature = "serde")]
mod serde_helpers {
    use std::any::TypeId;
    fn transmute_type_id_to_u64(id: &TypeId) -> u64 {
        unsafe { std::mem::transmute::<TypeId, u64>(*id) }
    }

    #[derive(serde::Serialize, serde::Deserialize)]
    #[serde(remote = "TypeId")]
    pub struct TypeIdDef {
        #[serde(getter = "transmute_type_id_to_u64")]
        t: u64,
    }

    impl From<TypeIdDef> for TypeId {
        fn from(def: TypeIdDef) -> TypeId {
            unsafe { std::mem::transmute::<u64, TypeId>(def.t) }
        }
    }
}

/// Buffer of plain old data. The data is stored as an array of bytes (`Vec<u8>`).
/// `DataBuffer` keeps track of the type stored within via an explicit `TypeId` member. This allows
/// one to hide the type from the compiler and check it only when necessary. It is particularly
/// useful when the type of data is determined at runtime (e.g. when parsing numeric data).
#[derive(Clone, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct DataBuffer {
    /// Raw data stored as an array of bytes.
    #[cfg_attr(feature = "serde_bytes", serde(with = "serde_bytes"))]
    data: Vec<u8>,
    /// Number of bytes occupied by ana element of this buffer.
    /// Note: We store this instead of length because it gives us the ability to get the type size
    /// when the buffer is empty.
    element_size: usize,
    /// Type encoding for hiding the type of data from the compiler.
    #[cfg_attr(feature = "serde", serde(with = "serde_helpers::TypeIdDef"))]
    element_type_id: TypeId,
}

impl DataBuffer {
    /// Construct an empty `DataBuffer` with a specific type.
    #[inline]
    pub fn with_type<T: Any>() -> Self {
        let element_size = size_of::<T>();
        assert_ne!(
            element_size, 0,
            "DataBuffer doesn't support zero sized types."
        );
        DataBuffer {
            data: Vec::new(),
            element_size,
            element_type_id: TypeId::of::<T>(),
        }
    }

    /// Construct a `DataBuffer` with the same type as the given buffer without copying its data.
    #[inline]
    pub fn with_buffer_type(other: &DataBuffer) -> Self {
        DataBuffer {
            data: Vec::new(),
            element_size: other.element_size,
            element_type_id: other.element_type_id,
        }
    }

    /// Construct an empty `DataBuffer` with a capacity for a given number of typed elements. For
    /// setting byte capacity use `with_byte_capacity`.
    #[inline]
    pub fn with_capacity<T: Any>(n: usize) -> Self {
        let element_size = size_of::<T>();
        assert_ne!(
            element_size, 0,
            "DataBuffer doesn't support zero sized types."
        );
        DataBuffer {
            data: Vec::with_capacity(n * element_size),
            element_size,
            element_type_id: TypeId::of::<T>(),
        }
    }

    /// Construct a typed `DataBuffer` with a given size and filled with the specified default
    /// value.
    /// #  Examples
    /// ```
    /// # extern crate data_buffer as buf;
    /// # use buf::DataBuffer;
    /// # fn main() {
    /// let buf = DataBuffer::with_size(8, 42usize); // Create buffer
    /// let buf_vec: Vec<usize> = buf.into_vec().unwrap(); // Convert into `Vec`
    /// assert_eq!(buf_vec, vec![42usize; 8]);
    /// # }
    /// ```
    #[inline]
    pub fn with_size<T: Any + Clone>(n: usize, def: T) -> Self {
        Self::from_vec(vec![def; n])
    }

    /// Construct a `DataBuffer` from a given `Vec<T>` reusing the space already allocated by the
    /// given vector.
    /// #  Examples
    /// ```
    /// # extern crate data_buffer as buf;
    /// # use buf::DataBuffer;
    /// # fn main() {
    /// let vec = vec![1u8, 3, 4, 1, 2];
    /// let buf = DataBuffer::from_vec(vec.clone()); // Convert into buffer
    /// let nu_vec: Vec<u8> = buf.into_vec().unwrap(); // Convert back into `Vec`
    /// assert_eq!(vec, nu_vec);
    /// # }
    /// ```
    pub fn from_vec<T: Any>(mut vec: Vec<T>) -> Self {
        let element_size = size_of::<T>();
        assert_ne!(
            element_size, 0,
            "DataBuffer doesn't support zero sized types."
        );

        let data = {
            let len_in_bytes = vec.len() * element_size;
            let capacity_in_bytes = vec.capacity() * element_size;
            let vec_ptr = vec.as_mut_ptr() as *mut u8;

            unsafe {
                ::std::mem::forget(vec);
                Vec::from_raw_parts(vec_ptr, len_in_bytes, capacity_in_bytes)
            }
        };

        DataBuffer {
            data,
            element_size,
            element_type_id: TypeId::of::<T>(),
        }
    }

    /// Construct a `DataBuffer` from a given slice by cloning the data.
    #[inline]
    pub fn from_slice<T: Any + Clone>(slice: &[T]) -> Self {
        let mut vec = Vec::with_capacity(slice.len());
        vec.extend_from_slice(slice);
        Self::from_vec(vec)
    }

    /// Resizes the buffer in-place to store `new_len` elements and returns an optional
    /// mutable reference to `Self`.
    ///
    /// If `T` does not correspond to the underlying element type, then `None` is returned and the
    /// `DataBuffer` is left unchanged.
    ///
    /// This function has the similar properties to `Vec::resize`.
    #[inline]
    pub fn resize<T: Any + Clone>(&mut self, new_len: usize, value: T) -> Option<&mut Self> {
        self.check_ref::<T>()?;
        let size_t = size_of::<T>();
        if new_len >= self.len() {
            let diff = new_len - self.len();
            self.reserve_bytes(diff * size_t);
            for _ in 0..diff {
                self.push(value.clone());
            }
        } else {
            // Truncate
            self.data.resize(new_len * size_t, 0);
        }
        Some(self)
    }

    /// Copy data from a given slice into the current buffer.
    #[inline]
    pub fn copy_from_slice<T: Any + Copy>(&mut self, slice: &[T]) -> &mut Self {
        let element_size = size_of::<T>();
        assert_ne!(
            element_size, 0,
            "DataBuffer doesn't support zero sized types."
        );
        let bins = slice.len() * element_size;
        let byte_slice = unsafe { slice::from_raw_parts(slice.as_ptr() as *const u8, bins) };
        self.data.resize(bins, 0);
        self.data.copy_from_slice(byte_slice);
        self.element_size = element_size;
        self.element_type_id = TypeId::of::<T>();
        self
    }

    /// Clear the data buffer without destroying its type information.
    #[inline]
    pub fn clear(&mut self) {
        self.data.clear();
    }

    /// Fill the current buffer with copies of the given value. The size of the buffer is left
    /// unchanged. If the given type doesn't patch the internal type, `None` is returned, otherwise
    /// a mut reference to the modified buffer is returned.
    /// #  Examples
    /// ```
    /// # extern crate data_buffer as buf;
    /// # use buf::DataBuffer;
    /// # fn main() {
    /// let vec = vec![1u8, 3, 4, 1, 2];
    /// let mut buf = DataBuffer::from_vec(vec.clone()); // Convert into buffer
    /// buf.fill(0u8);
    /// assert_eq!(buf.into_vec::<u8>().unwrap(), vec![0u8, 0, 0, 0, 0]);
    /// # }
    /// ```
    #[inline]
    pub fn fill<T: Any + Clone>(&mut self, def: T) -> Option<&mut Self> {
        for v in self.iter_mut::<T>()? {
            *v = def.clone();
        }
        Some(self)
    }

    /// Add an element to this buffer. If the type of the given element coincides with the type
    /// stored by this buffer, then the modified buffer is returned via a mutable reference.
    /// Otherwise, `None` is returned.
    #[inline]
    pub fn push<T: Any>(&mut self, element: T) -> Option<&mut Self> {
        self.check_ref::<T>()?;
        let element_ref = &element;
        let element_byte_ptr = element_ref as *const T as *const u8;
        let element_byte_slice = unsafe { slice::from_raw_parts(element_byte_ptr, size_of::<T>()) };
        self.push_bytes(element_byte_slice)
    }

    /// Check if the current buffer contains elements of the specified type. Returns `Some(self)`
    /// if the type matches and `None` otherwise.
    #[inline]
    pub fn check<T: Any>(self) -> Option<Self> {
        if TypeId::of::<T>() != self.element_type_id() {
            None
        } else {
            Some(self)
        }
    }

    /// Check if the current buffer contains elements of the specified type. Returns `None` if the
    /// check fails, otherwise a reference to self is returned.
    #[inline]
    pub fn check_ref<T: Any>(&self) -> Option<&Self> {
        if TypeId::of::<T>() != self.element_type_id() {
            None
        } else {
            Some(self)
        }
    }

    /// Check if the current buffer contains elements of the specified type. Same as `check_ref`
    /// but consumes and produces a mut reference to self.
    #[inline]
    pub fn check_mut<'a, T: Any>(&'a mut self) -> Option<&'a mut Self> {
        if TypeId::of::<T>() != self.element_type_id() {
            None
        } else {
            Some(self)
        }
    }

    /*
     * Accessors
     */

    /// Get the `TypeId` of data stored within this buffer.
    #[inline]
    pub fn element_type_id(&self) -> TypeId {
        self.element_type_id
    }

    /// Get the number of elements stored in this buffer.
    #[inline]
    pub fn len(&self) -> usize {
        debug_assert_eq!(self.data.len() % self.element_size, 0);
        self.data.len() / self.element_size // element_size is guaranteed to be strictly positive
    }

    /// Check if there are any elements stored in this buffer.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }

    /// Get the byte capacity of this buffer.
    #[inline]
    pub fn byte_capacity(&self) -> usize {
        self.data.capacity()
    }

    /// Get the size of the element type.
    #[inline]
    pub fn element_size(&self) -> usize {
        self.element_size
    }

    /// Return an iterator to a slice representing typed data.
    /// Returs `None` if the given type `T` doesn't match the internal.
    /// # Examples
    /// ```
    /// # extern crate data_buffer as buf;
    /// # use buf::DataBuffer;
    /// # fn main() {
    /// let vec = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
    /// let buf = DataBuffer::from(vec.clone()); // Convert into buffer
    /// for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
    ///     assert_eq!(val, vec[i]);
    /// }
    /// # }
    /// ```
    #[inline]
    pub fn iter<'a, T: Any + 'a>(&'a self) -> Option<slice::Iter<T>> {
        self.as_slice::<T>().map(|x| x.iter())
    }

    /// Return an iterator to a mutable slice representing typed data.
    /// Returs `None` if the given type `T` doesn't match the internal.
    #[inline]
    pub fn iter_mut<'a, T: Any + 'a>(&'a mut self) -> Option<slice::IterMut<T>> {
        self.as_mut_slice::<T>().map(|x| x.iter_mut())
    }

    /// Append cloned items from this buffer to a given `Vec<T>`. Return the mutable reference
    /// `Some(vec)` if type matched the internal type and `None` otherwise.
    #[inline]
    pub fn append_clone_to_vec<'a, T>(&self, vec: &'a mut Vec<T>) -> Option<&'a mut Vec<T>>
    where
        T: Any + Clone,
    {
        vec.extend_from_slice(self.as_slice()?);
        Some(vec)
    }

    /// Append copied items from this buffer to a given `Vec<T>`. Return the mutable reference
    /// `Some(vec)` if type matched the internal type and `None` otherwise. This may be faster than
    /// `append_clone_to_vec`.
    #[inline]
    pub fn append_copy_to_vec<'a, T>(&self, vec: &'a mut Vec<T>) -> Option<&'a mut Vec<T>>
    where
        T: Any + Copy,
    {
        vec.extend(self.iter()?);
        Some(vec)
    }

    /// Clones contents of `self` into the given `Vec`.
    #[inline]
    pub fn clone_into_vec<T: Any + Clone>(&self) -> Option<Vec<T>> {
        let mut vec = Vec::<T>::with_capacity(self.len());
        match self.append_clone_to_vec(&mut vec) {
            Some(_) => Some(vec),
            None => None,
        }
    }

    /// Copies contents of `self` into the given `Vec`.
    #[inline]
    pub fn copy_into_vec<T: Any + Copy>(&self) -> Option<Vec<T>> {
        let mut vec = Vec::<T>::with_capacity(self.len());
        match self.append_copy_to_vec(&mut vec) {
            Some(_) => Some(vec),
            None => None,
        }
    }

    /// An alternative to using the `Into` trait. This function helps the compiler
    /// determine the type `T` automatically.
    #[inline]
    pub fn into_vec<T: Any>(self) -> Option<Vec<T>> {
        unsafe { self.check::<T>().map(|x| x.reinterpret_into_vec()) }
    }

    /// Convert this buffer into a typed slice.
    /// Returs `None` if the given type `T` doesn't match the internal.
    #[inline]
    pub fn as_slice<T: Any>(&self) -> Option<&[T]> {
        let ptr = self.check_ref::<T>()?.data.as_ptr() as *const T;
        Some(unsafe { slice::from_raw_parts(ptr, self.len()) })
    }

    /// Convert this buffer into a typed mutable slice.
    /// Returs `None` if the given type `T` doesn't match the internal.
    #[inline]
    pub fn as_mut_slice<T: Any>(&mut self) -> Option<&mut [T]> {
        let ptr = self.check_mut::<T>()?.data.as_mut_ptr() as *mut T;
        Some(unsafe { slice::from_raw_parts_mut(ptr, self.len()) })
    }

    /// Get `i`'th element of the buffer by value.
    #[inline]
    pub fn get<T: Any + Copy>(&self, i: usize) -> Option<T> {
        assert!(i < self.len());
        let ptr = self.check_ref::<T>()?.data.as_ptr() as *const T;
        Some(unsafe { *ptr.add(i) })
    }

    /// Get a `const` reference to the `i`'th element of the buffer.
    #[inline]
    pub fn get_ref<T: Any>(&self, i: usize) -> Option<&T> {
        assert!(i < self.len());
        let ptr = self.check_ref::<T>()?.data.as_ptr() as *const T;
        Some(unsafe { &*ptr.add(i) })
    }

    /// Get a mutable reference to the `i`'th element of the buffer.
    #[inline]
    pub fn get_mut<T: Any>(&mut self, i: usize) -> Option<&mut T> {
        assert!(i < self.len());
        let ptr = self.check_mut::<T>()?.data.as_mut_ptr() as *mut T;
        Some(unsafe { &mut *ptr.add(i) })
    }

    /*
     * Advanced methods to probe buffer internals.
     */

    /// Reserves capacity for at least `additional` more bytes to be inserted in this buffer.
    #[inline]
    pub fn reserve_bytes(&mut self, additional: usize) {
        self.data.reserve(additional);
    }

    /// Get `i`'th element of the buffer by value without checking type.
    /// This can be used to reinterpret the internal data as a different type. Note that if the
    /// size of the given type `T` doesn't match the size of the internal type, `i` will really
    /// index the `i`th `T` sized chunk in the current buffer. See the implementation for details.
    #[inline]
    pub unsafe fn get_unchecked<T: Any + Copy>(&self, i: usize) -> T {
        let ptr = self.data.as_ptr() as *const T;
        *ptr.add(i)
    }

    /// Get a `const` reference to the `i`'th element of the buffer.
    /// This can be used to reinterpret the internal data as a different type. Note that if the
    /// size of the given type `T` doesn't match the size of the internal type, `i` will really
    /// index the `i`th `T` sized chunk in the current buffer. See the implementation for details.
    #[inline]
    pub unsafe fn get_unchecked_ref<T: Any>(&self, i: usize) -> &T {
        let ptr = self.data.as_ptr() as *const T;
        &*ptr.add(i)
    }

    /// Get a mutable reference to the `i`'th element of the buffer.
    /// This can be used to reinterpret the internal data as a different type. Note that if the
    /// size of the given type `T` doesn't match the size of the internal type, `i` will really
    /// index the `i`th `T` sized chunk in the current buffer. See the implementation for details.
    #[inline]
    pub unsafe fn get_unchecked_mut<T: Any>(&mut self, i: usize) -> &mut T {
        let ptr = self.data.as_mut_ptr() as *mut T;
        &mut *ptr.add(i)
    }

    /// Get a `const` reference to the byte slice of the `i`'th element of the buffer.
    #[inline]
    pub fn get_bytes(&self, i: usize) -> &[u8] {
        assert!(i < self.len());
        let element_size = self.element_size();
        &self.data[i * element_size..(i + 1) * element_size]
    }

    /// Get a mutable reference to the byte slice of the `i`'th element of the buffer.
    #[inline]
    pub fn get_bytes_mut(&mut self, i: usize) -> &mut [u8] {
        assert!(i < self.len());
        let element_size = self.element_size();
        &mut self.data[i * element_size..(i + 1) * element_size]
    }

    /// Move buffer data to a vector with a given type, reinterpreting the data type as
    /// required.
    #[inline]
    pub unsafe fn reinterpret_into_vec<T>(self) -> Vec<T> {
        reinterpret::reinterpret_vec(self.data)
    }

    /// Borrow buffer data and reinterpret it as a slice of a given type.
    #[inline]
    pub unsafe fn reinterpret_as_slice<T>(&self) -> &[T] {
        reinterpret::reinterpret_slice(self.data.as_slice())
    }

    /// Mutably borrow buffer data and reinterpret it as a mutable slice of a given type.
    #[inline]
    pub unsafe fn reinterpret_as_mut_slice<T>(&mut self) -> &mut [T] {
        reinterpret::reinterpret_mut_slice(self.data.as_mut_slice())
    }

    /// Borrow buffer data and iterate over reinterpreted underlying data.
    #[inline]
    pub unsafe fn reinterpret_iter<T>(&self) -> slice::Iter<T> {
        self.reinterpret_as_slice().iter()
    }

    /// Mutably borrow buffer data and mutably iterate over reinterpreted underlying data.
    #[inline]
    pub unsafe fn reinterpret_iter_mut<T>(&mut self) -> slice::IterMut<T> {
        self.reinterpret_as_mut_slice().iter_mut()
    }

    /// Peak at the internal representation of the data.
    #[inline]
    pub fn as_bytes(&self) -> &[u8] {
        self.data.as_slice()
    }

    /// Get a mutable reference to the internal data representation.
    #[inline]
    pub fn as_bytes_mut(&mut self) -> &mut [u8] {
        self.data.as_mut_slice()
    }

    /// Iterate over chunks type sized chunks of bytes without interpreting them. This avoids
    /// needing to know what type data you're dealing with. This type of iterator is useful for
    /// transferring data from one place to another for a generic buffer.
    #[inline]
    pub fn byte_chunks<'a>(&'a self) -> impl Iterator<Item = &'a [u8]> + 'a {
        let chunk_size = self.element_size();
        self.data.chunks(chunk_size)
    }

    /// Mutably iterate over chunks type sized chunks of bytes without interpreting them. This
    /// avoids needing to know what type data you're dealing with. This type of iterator is useful
    /// for transferring data from one place to another for a generic buffer, or modifying the
    /// underlying untyped bytes (e.g. bit twiddling).
    #[inline]
    pub fn byte_chunks_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut [u8]> + 'a {
        let chunk_size = self.element_size();
        self.data.chunks_mut(chunk_size)
    }

    /// Add bytes to this buffer. If the size of the given slice coincides with the number of bytes
    /// occupied by the underlying element type, then these bytes are added to the underlying data
    /// buffer and a mutable reference to the buffer is returned.
    /// Otherwise, `None` is returned, and the buffer remains unmodified.
    #[inline]
    pub fn push_bytes(&mut self, bytes: &[u8]) -> Option<&mut Self> {
        if bytes.len() == self.element_size() {
            self.data.extend_from_slice(bytes);
            Some(self)
        } else {
            None
        }
    }

    /// Add bytes to this buffer. If the size of the given slice is a multiple of the number of bytes
    /// occupied by the underlying element type, then these bytes are added to the underlying data
    /// buffer and a mutable reference to the buffer is returned.
    /// Otherwise, `None` is returned and the buffer is unmodified.
    #[inline]
    pub fn extend_bytes(&mut self, bytes: &[u8]) -> Option<&mut Self> {
        let element_size = self.element_size();
        if bytes.len() % element_size == 0 {
            self.data.extend_from_slice(bytes);
            Some(self)
        } else {
            None
        }
    }

    /// Move bytes to this buffer. If the size of the given vector is a multiple of the number of bytes
    /// occupied by the underlying element type, then these bytes are moved to the underlying data
    /// buffer and a mutable reference to the buffer is returned.
    /// Otherwise, `None` is returned and both the buffer and the input vector remain unmodified.
    #[inline]
    pub fn append_bytes(&mut self, bytes: &mut Vec<u8>) -> Option<&mut Self> {
        let element_size = self.element_size();
        if bytes.len() % element_size == 0 {
            self.data.append(bytes);
            Some(self)
        } else {
            None
        }
    }

    /// Move bytes to this buffer. The given buffer must have the same underlying type as self.
    #[inline]
    pub fn append(&mut self, buf: &mut DataBuffer) -> Option<&mut Self> {
        if buf.element_type_id() == self.element_type_id() {
            self.data.append(&mut buf.data);
            Some(self)
        } else {
            None
        }
    }

    /// Rotates the slice in-place such that the first `mid` elements of the slice move to the end
    /// while the last `self.len() - mid` elements move to the front. After calling `rotate_left`,
    /// the element previously at index `mid` will become the first element in the slice.
    ///
    /// # Example
    ///
    /// ```
    /// # use data_buffer::*;
    /// let mut buf = DataBuffer::from_vec(vec![1u32,2,3,4,5]);
    /// buf.rotate_left(3);
    /// assert_eq!(buf.as_slice::<u32>().unwrap(), &[4,5,1,2,3]);
    /// ```
    #[inline]
    pub fn rotate_left(&mut self, mid: usize) {
        self.data.rotate_left(mid * self.element_size);
    }

    /// Rotates the slice in-place such that the first `self.len() - k` elements of the slice move
    /// to the end while the last `k` elements move to the front. After calling `rotate_right`, the
    /// element previously at index `k` will become the first element in the slice.
    ///
    /// # Example
    ///
    /// ```
    /// # use data_buffer::*;
    /// let mut buf = DataBuffer::from_vec(vec![1u32,2,3,4,5]);
    /// buf.rotate_right(3);
    /// assert_eq!(buf.as_slice::<u32>().unwrap(), &[3,4,5,1,2]);
    /// ```
    #[inline]
    pub fn rotate_right(&mut self, k: usize) {
        self.data.rotate_right(k * self.element_size);
    }

    /*
     * Methods specific to buffers storing numeric data
     */

    #[cfg(feature = "numeric")]
    /// Cast a numeric `DataBuffer` into the given output `Vec` type.
    pub fn cast_into_vec<T>(self) -> Vec<T>
    where
        T: Any + Copy + NumCast + Zero,
    {
        // Helper function (generic on the input) to convert the given DataBuffer into Vec.
        unsafe fn convert_into_vec<I, O>(buf: DataBuffer) -> Vec<O>
        where
            I: Any + NumCast,
            O: Any + Copy + NumCast + Zero,
        {
            debug_assert_eq!(buf.element_type_id(), TypeId::of::<I>()); // Check invariant.
            buf.reinterpret_into_vec()
                .into_iter()
                .map(|elem: I| cast(elem).unwrap_or(O::zero()))
                .collect()
        }
        call_numeric_buffer_fn!( convert_into_vec::<_,T>(self) or { Vec::new() } )
    }

    #[cfg(feature = "numeric")]
    /// Display the contents of this buffer reinterpreted in the given type.
    unsafe fn reinterpret_display<T: Any + fmt::Display>(&self, f: &mut fmt::Formatter) {
        debug_assert_eq!(self.element_type_id(), TypeId::of::<T>()); // Check invariant.
        for item in self.reinterpret_iter::<T>() {
            write!(f, "{} ", item).expect("Error occurred while writing an DataBuffer.");
        }
    }
}

/// Convert a `Vec<T>` to a `DataBuffer`.
impl<T> From<Vec<T>> for DataBuffer
where
    T: Any,
{
    #[inline]
    fn from(vec: Vec<T>) -> DataBuffer {
        DataBuffer::from_vec(vec)
    }
}

/// Convert a `&[T]` to a `DataBuffer`.
impl<'a, T> From<&'a [T]> for DataBuffer
where
    T: Any + Clone,
{
    #[inline]
    fn from(slice: &'a [T]) -> DataBuffer {
        DataBuffer::from_slice(slice)
    }
}

/// Convert a `DataBuffer` to a `Option<Vec<T>>`.
impl<T> Into<Option<Vec<T>>> for DataBuffer
where
    T: Any + Clone,
{
    #[inline]
    fn into(self) -> Option<Vec<T>> {
        self.into_vec()
    }
}

#[cfg(feature = "numeric")]
/// Implement pretty printing of numeric `DataBuffer` data.
impl fmt::Display for DataBuffer {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        call_numeric_buffer_fn!( self.reinterpret_display::<_>(f) or {
            println!("Unknown DataBuffer type for pretty printing.");
        } );
        write!(f, "")
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    /// Test various ways to create a data buffer.
    #[test]
    fn initialization_test() {
        // Empty typed buffer.
        let a = DataBuffer::with_type::<f32>();
        assert_eq!(a.len(), 0);
        assert_eq!(a.as_bytes().len(), 0);
        assert_eq!(a.element_type_id(), TypeId::of::<f32>());
        assert_eq!(a.byte_capacity(), 0); // Ensure nothing is allocated.

        // Empty buffer typed by the given type id.
        let b = DataBuffer::with_buffer_type(&a);
        assert_eq!(b.len(), 0);
        assert_eq!(b.as_bytes().len(), 0);
        assert_eq!(b.element_type_id(), TypeId::of::<f32>());
        assert_eq!(a.byte_capacity(), 0); // Ensure nothing is allocated.

        // Empty typed buffer with a given capacity.
        let a = DataBuffer::with_capacity::<f32>(4);
        assert_eq!(a.len(), 0);
        assert_eq!(a.as_bytes().len(), 0);
        assert_eq!(a.byte_capacity(), 4 * size_of::<f32>());
        assert_eq!(a.element_type_id(), TypeId::of::<f32>());
    }

    /// Test reserving capacity after creation.
    #[test]
    fn reserve_bytes() {
        let mut a = DataBuffer::with_type::<f32>();
        assert_eq!(a.byte_capacity(), 0);
        a.reserve_bytes(10);
        assert_eq!(a.len(), 0);
        assert_eq!(a.as_bytes().len(), 0);
        assert!(a.byte_capacity() >= 10);
    }

    /// Test resizing a buffer.
    #[test]
    fn resize() {
        let mut a = DataBuffer::with_type::<f32>();

        // Increase the size of a.
        a.resize(3, 1.0f32);

        assert_eq!(a.len(), 3);
        assert_eq!(a.as_bytes().len(), 12);
        for i in 0..3 {
            assert_eq!(a.get::<f32>(i).unwrap(), 1.0f32);
        }

        // Truncate a.
        a.resize(2, 1.0f32);

        assert_eq!(a.len(), 2);
        assert_eq!(a.as_bytes().len(), 8);
        for i in 0..2 {
            assert_eq!(a.get::<f32>(i).unwrap(), 1.0f32);
        }
    }

    #[test]
    #[should_panic]
    fn zero_size_with_type_test() {
        let _a = DataBuffer::with_type::<()>();
    }

    #[test]
    #[should_panic]
    fn zero_size_with_capacity_test() {
        let _a = DataBuffer::with_capacity::<()>(2);
    }

    #[test]
    #[should_panic]
    fn zero_size_from_vec_test() {
        let _a = DataBuffer::from_vec(vec![(); 3]);
    }

    #[test]
    #[should_panic]
    fn zero_size_with_size_test() {
        let _a = DataBuffer::with_size(3, ());
    }

    #[test]
    #[should_panic]
    fn zero_size_from_slice_test() {
        let v = vec![(); 3];
        let _a = DataBuffer::from_slice(&v);
    }

    #[test]
    #[should_panic]
    fn zero_size_copy_from_slice_test() {
        let v = vec![(); 3];
        let mut a = DataBuffer::with_size(0, 1i32);
        a.copy_from_slice(&v);
    }

    #[test]
    fn data_integrity_u8_test() {
        let vec = vec![1u8, 3, 4, 1, 2];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<u8> = buf.copy_into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);

        let vec = vec![1u8, 3, 4, 1, 2, 52, 1, 3, 41, 23, 2];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<u8> = buf.copy_into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[test]
    fn data_integrity_i16_test() {
        let vec = vec![1i16, -3, 1002, -231, 32];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<i16> = buf.copy_into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);

        let vec = vec![1i16, -3, 1002, -231, 32, 42, -123, 4];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<i16> = buf.copy_into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[test]
    fn data_integrity_i32_test() {
        let vec = vec![1i32, -3, 1002, -231, 32];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<i32> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);

        let vec = vec![1i32, -3, 1002, -231, 32, 42, -123];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<i32> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[test]
    fn data_integrity_f32_test() {
        let vec = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<f32> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);

        let vec = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43, 2e-1];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<f32> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[test]
    fn data_integrity_f64_test() {
        let vec = vec![1f64, -3.0, 10.02, -23.1, 32e-1];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<f64> = buf.copy_into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);

        let vec = vec![1f64, -3.1, 100.2, -2.31, 3.2, 4e2, -1e23];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<f64> = buf.copy_into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[cfg(feature = "numeric")]
    #[test]
    fn convert_float_test() {
        let vecf64 = vec![1f64, -3.0, 10.02, -23.1, 32e-1];
        let buf = DataBuffer::from(vecf64.clone()); // Convert into buffer
        let nu_vec: Vec<f32> = buf.cast_into_vec(); // Convert back into vec
        let vecf32 = vec![1f32, -3.0, 10.02, -23.1, 32e-1];
        assert_eq!(vecf32, nu_vec);

        let buf = DataBuffer::from(vecf32.clone()); // Convert into buffer
        let nu_vec: Vec<f64> = buf.cast_into_vec(); // Convert back into vec
        for (&a, &b) in vecf64.iter().zip(nu_vec.iter()) {
            assert!((a - b).abs() < 1e-6f64 * f64::max(a, b).abs());
        }

        let vecf64 = vec![1f64, -3.1, 100.2, -2.31, 3.2, 4e2, -1e23];
        let buf = DataBuffer::from(vecf64.clone()); // Convert into buffer
        let nu_vec: Vec<f32> = buf.cast_into_vec(); // Convert back into vec
        let vecf32 = vec![1f32, -3.1, 100.2, -2.31, 3.2, 4e2, -1e23];
        assert_eq!(vecf32, nu_vec);
        let buf = DataBuffer::from(vecf32.clone()); // Convert into buffer
        let nu_vec: Vec<f64> = buf.cast_into_vec(); // Convert back into vec
        for (&a, &b) in vecf64.iter().zip(nu_vec.iter()) {
            assert!((a - b).abs() < 1e-6 * f64::max(a, b).abs());
        }
    }

    #[derive(Clone, Debug, PartialEq)]
    struct Foo {
        a: u8,
        b: i64,
        c: f32,
    }

    #[test]
    fn from_empty_vec_test() {
        let vec: Vec<u32> = Vec::new();
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<u32> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);

        let vec: Vec<String> = Vec::new();
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<String> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);

        let vec: Vec<Foo> = Vec::new();
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        let nu_vec: Vec<Foo> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[test]
    fn from_struct_test() {
        let f1 = Foo {
            a: 3,
            b: -32,
            c: 54.2,
        };
        let f2 = Foo {
            a: 33,
            b: -3342432412,
            c: 323454.2,
        };
        let vec = vec![f1.clone(), f2.clone()];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        assert_eq!(f1, buf.get_ref::<Foo>(0).unwrap().clone());
        assert_eq!(f2, buf.get_ref::<Foo>(1).unwrap().clone());
        let nu_vec: Vec<Foo> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[test]
    fn from_strings_test() {
        let vec = vec![
            String::from("hi"),
            String::from("hello"),
            String::from("goodbye"),
            String::from("bye"),
            String::from("supercalifragilisticexpialidocious"),
            String::from("42"),
        ];
        let buf = DataBuffer::from(vec.clone()); // Convert into buffer
        assert_eq!("hi", buf.get_ref::<String>(0).unwrap());
        assert_eq!("hello", buf.get_ref::<String>(1).unwrap());
        assert_eq!("goodbye", buf.get_ref::<String>(2).unwrap());
        let nu_vec: Vec<String> = buf.into_vec().unwrap(); // Convert back into vec
        assert_eq!(vec, nu_vec);
    }

    #[test]
    fn iter_test() {
        // Check iterating over data with a larger size than 8 bits.
        let vec_f32 = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
        let buf = DataBuffer::from(vec_f32.clone()); // Convert into buffer
        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }

        // Check iterating over data with the same size.
        let vec_u8 = vec![1u8, 3, 4, 1, 2, 4, 128, 32];
        let buf = DataBuffer::from(vec_u8.clone()); // Convert into buffer
        for (i, &val) in buf.iter::<u8>().unwrap().enumerate() {
            assert_eq!(val, vec_u8[i]);
        }

        // Check unsafe functions:
        unsafe {
            // TODO: feature gate these two tests for little endian platforms.
            // Check iterating over data with a larger size than input.
            let vec_u32 = vec![17_040_129u32, 545_260_546]; // little endian
            let buf = DataBuffer::from(vec_u8.clone()); // Convert into buffer
            for (i, &val) in buf.reinterpret_iter::<u32>().enumerate() {
                assert_eq!(val, vec_u32[i]);
            }

            // Check iterating over data with a smaller size than input
            let mut buf2 = DataBuffer::from(vec_u32); // Convert into buffer
            for (i, &val) in buf2.reinterpret_iter::<u8>().enumerate() {
                assert_eq!(val, vec_u8[i]);
            }

            // Check mut iterator
            buf2.reinterpret_iter_mut::<u8>().for_each(|val| *val += 1);

            let u8_check_vec = vec![2u8, 4, 5, 2, 3, 5, 129, 33];
            assert_eq!(buf2.reinterpret_into_vec::<u8>(), u8_check_vec);
        }
    }

    #[test]
    fn large_sizes_test() {
        for i in 1000000..1000010 {
            let vec = vec![32u8; i];
            let buf = DataBuffer::from(vec.clone()); // Convert into buffer
            let nu_vec: Vec<u8> = buf.into_vec().unwrap(); // Convert back into vec
            assert_eq!(vec, nu_vec);
        }
    }

    /// This test checks that an error is returned whenever the user tries to access data with the
    /// wrong type data.
    #[test]
    fn wrong_type_test() {
        let vec = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
        let mut buf = DataBuffer::from(vec.clone()); // Convert into buffer
        assert_eq!(vec, buf.clone_into_vec::<f32>().unwrap());

        assert!(buf.copy_into_vec::<f64>().is_none());
        assert!(buf.as_slice::<f64>().is_none());
        assert!(buf.as_mut_slice::<u8>().is_none());
        assert!(buf.iter::<[f32; 3]>().is_none());
        assert!(buf.get::<i32>(0).is_none());
        assert!(buf.get_ref::<i32>(1).is_none());
        assert!(buf.get_mut::<i32>(2).is_none());
    }

    /// Test iterating over chunks of data without having to interpret them.
    #[test]
    fn byte_chunks_test() {
        let vec_f32 = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
        let buf = DataBuffer::from(vec_f32.clone()); // Convert into buffer

        for (i, val) in buf.byte_chunks().enumerate() {
            assert_eq!(
                unsafe { reinterpret::reinterpret_slice::<u8, f32>(val)[0] },
                vec_f32[i]
            );
        }
    }

    /// Test pushing values and bytes to a buffer.
    #[test]
    fn push_test() {
        let mut vec_f32 = vec![1.0_f32, 23.0, 0.01];
        let mut buf = DataBuffer::from(vec_f32.clone()); // Convert into buffer
        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }

        vec_f32.push(42.0f32);
        buf.push(42.0f32).unwrap(); // must provide explicit type

        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }

        vec_f32.push(11.43);
        buf.push(11.43f32).unwrap();

        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }

        // Zero float is always represented by four zero bytes in IEEE format.
        vec_f32.push(0.0);
        vec_f32.push(0.0);
        buf.extend_bytes(&[0, 0, 0, 0, 0, 0, 0, 0]).unwrap();

        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }

        // Test byte getters
        for i in 5..7 {
            assert_eq!(buf.get_bytes(i), &[0, 0, 0, 0]);
            assert_eq!(buf.get_bytes_mut(i), &[0, 0, 0, 0]);
        }

        vec_f32.push(0.0);
        buf.push_bytes(&[0, 0, 0, 0]).unwrap();

        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }
    }

    /// Test appending to a data buffer from another data buffer.
    #[test]
    fn append_test() {
        let mut buf = DataBuffer::with_type::<f32>(); // Create an empty buffer.

        let data = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
        // Append an ordianry vector of data.
        let mut other_buf = DataBuffer::from_vec(data.clone());
        buf.append(&mut other_buf);

        assert!(other_buf.is_empty());

        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, data[i]);
        }
    }

    /// Test appending to a data buffer from other slices and vectors.
    #[test]
    fn extend_append_bytes_test() {
        let mut buf = DataBuffer::with_type::<f32>(); // Create an empty buffer.

        // Append an ordianry vector of data.
        let vec_f32 = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
        let mut vec_bytes: Vec<u8> = unsafe { reinterpret::reinterpret_vec(vec_f32.clone()) };
        buf.append_bytes(&mut vec_bytes);

        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }

        buf.clear();
        assert_eq!(buf.len(), 0);

        // Append a temporary vec.
        buf.append_bytes(&mut vec![0u8; 4]);
        assert_eq!(buf.get::<f32>(0).unwrap(), 0.0f32);

        buf.clear();
        assert_eq!(buf.len(), 0);

        // Extend buffer with a slice
        let slice_bytes: &[u8] = unsafe { reinterpret::reinterpret_slice(&vec_f32) };
        buf.extend_bytes(slice_bytes);

        for (i, &val) in buf.iter::<f32>().unwrap().enumerate() {
            assert_eq!(val, vec_f32[i]);
        }
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serde_test() {
        let vec_f32 = vec![1.0_f32, 23.0, 0.01, 42.0, 11.43];
        let buf = DataBuffer::from(vec_f32.clone()); // Convert into buffer
        dbg!(&buf);
        let buf_str = serde_json::to_string(&buf).expect("Failed to serialize DataBuffer.");
        dbg!(&buf_str);
        let new_buf = serde_json::from_str(&buf_str).expect("Failed to deserialize DataBuffer.");
        dbg!(&new_buf);
        assert_eq!(buf, new_buf);
    }
}