1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use crate::{
rbig::{RBig, Relaxed},
repr::Repr,
};
use dashu_base::{Approximation, ConversionError, DivRem};
use dashu_float::{
round::{Round, Rounded},
Context, FBig, Repr as FBigRepr,
};
use dashu_int::{UBig, Word};
impl<R: Round, const B: Word> From<Repr> for FBig<R, B> {
#[inline]
fn from(v: Repr) -> Self {
let Repr {
numerator,
denominator,
} = v;
FBig::from(numerator) / FBig::from(denominator)
}
}
impl<const B: Word> TryFrom<FBigRepr<B>> for Repr {
type Error = ConversionError;
fn try_from(value: FBigRepr<B>) -> Result<Self, Self::Error> {
if value.is_infinite() {
Err(ConversionError::OutOfBounds)
} else {
let (signif, exp) = value.into_parts();
let (numerator, denominator) = if exp >= 0 {
(signif * UBig::from_word(B).pow(exp as usize), UBig::ONE)
} else {
(signif, UBig::from_word(B).pow((-exp) as usize))
};
Ok(Repr {
numerator,
denominator,
})
}
}
}
impl<R: Round, const B: Word> TryFrom<FBig<R, B>> for Repr {
type Error = ConversionError;
#[inline]
fn try_from(value: FBig<R, B>) -> Result<Self, Self::Error> {
value.into_repr().try_into()
}
}
macro_rules! forward_conversion_to_repr {
($t:ident, $reduce:ident) => {
impl<R: Round, const B: Word> From<$t> for FBig<R, B> {
#[inline]
fn from(v: $t) -> Self {
v.0.into()
}
}
impl<const B: Word> TryFrom<FBigRepr<B>> for $t {
type Error = ConversionError;
#[inline]
fn try_from(value: FBigRepr<B>) -> Result<Self, Self::Error> {
Repr::try_from(value).map(|repr| $t(repr.$reduce()))
}
}
impl<R: Round, const B: Word> TryFrom<FBig<R, B>> for $t {
type Error = ConversionError;
#[inline]
fn try_from(value: FBig<R, B>) -> Result<Self, Self::Error> {
Repr::try_from(value).map(|repr| $t(repr.$reduce()))
}
}
};
}
forward_conversion_to_repr!(RBig, reduce);
forward_conversion_to_repr!(Relaxed, reduce2);
impl Repr {
fn to_float<R: Round, const B: Word>(&self, precision: usize) -> Rounded<FBig<R, B>> {
assert!(precision > 0);
if self.numerator.is_zero() {
return Approximation::Exact(FBig::ZERO);
}
let base = UBig::from_word(B);
let num_digits = self.numerator.ilog(&base);
let den_digits = self.denominator.ilog(&base);
let shift;
let (q, r) = if num_digits >= precision + den_digits {
shift = 0;
(&self.numerator).div_rem(&self.denominator)
} else {
shift = (precision + den_digits) - num_digits;
if B == 2 {
(&self.numerator << shift).div_rem(&self.denominator)
} else {
(&self.numerator * base.pow(shift)).div_rem(&self.denominator)
}
};
let rounded = if r.is_zero() {
Approximation::Exact(q)
} else {
let den = self.denominator.clone().into();
let adjust = R::round_ratio(&q, r, &den);
Approximation::Inexact(q + adjust, adjust)
};
let context = Context::<R>::new(precision);
rounded
.and_then(|n| context.convert_int(n))
.map(|f| f >> (shift as isize))
}
}
impl RBig {
#[inline]
pub fn to_float<R: Round, const B: Word>(&self, precision: usize) -> Rounded<FBig<R, B>> {
self.0.to_float(precision)
}
}
impl Relaxed {
#[inline]
pub fn to_float<R: Round, const B: Word>(&self, precision: usize) -> Rounded<FBig<R, B>> {
self.0.to_float(precision)
}
}