1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
//! Implement num-integer traits.

use crate::{ibig::IBig, ubig::UBig};
use dashu_base::{BitTest, CubicRoot, DivRem, ExtendedGcd, Gcd, Sign, SquareRoot};
use num_integer_v01 as num_integer;

impl num_integer::Integer for UBig {
    #[inline]
    fn div_floor(&self, other: &Self) -> Self {
        self / other
    }
    #[inline]
    fn div_rem(&self, other: &Self) -> (Self, Self) {
        DivRem::div_rem(self, other)
    }
    #[inline]
    fn mod_floor(&self, other: &Self) -> Self {
        self & other
    }
    #[inline]
    fn divides(&self, other: &Self) -> bool {
        (self % other).is_zero()
    }
    #[inline]
    fn is_multiple_of(&self, other: &Self) -> bool {
        (self % other).is_zero()
    }
    #[inline]
    fn is_even(&self) -> bool {
        !self.bit(0)
    }
    #[inline]
    fn is_odd(&self) -> bool {
        self.bit(0)
    }
    #[inline]
    fn gcd(&self, other: &Self) -> Self {
        Gcd::gcd(self, other)
    }
    #[inline]
    fn lcm(&self, other: &Self) -> Self {
        if self.is_zero() && other.is_zero() {
            UBig::ZERO
        } else {
            self / Gcd::gcd(self, other) * other
        }
    }
    #[inline]
    fn extended_gcd(&self, other: &Self) -> num_integer::ExtendedGcd<Self> {
        let (g, x, y) = ExtendedGcd::gcd_ext(self, other);
        num_integer::ExtendedGcd {
            gcd: g,
            x: x.try_into().unwrap(),
            y: y.try_into().unwrap(),
        }
    }
}

impl num_integer::Roots for UBig {
    #[inline]
    fn sqrt(&self) -> Self {
        SquareRoot::sqrt(self)
    }
    #[inline]
    fn cbrt(&self) -> Self {
        CubicRoot::cbrt(self)
    }
    #[inline]
    fn nth_root(&self, n: u32) -> Self {
        self.nth_root(n as usize)
    }
}

impl num_integer::Integer for IBig {
    #[inline]
    fn div_floor(&self, other: &Self) -> Self {
        let (q, r) = DivRem::div_rem(self, other);
        if !r.is_zero() && q.sign() == Sign::Negative {
            q - IBig::ONE
        } else {
            q
        }
    }
    #[inline]
    fn div_rem(&self, other: &Self) -> (Self, Self) {
        DivRem::div_rem(self, other)
    }
    #[inline]
    fn mod_floor(&self, other: &Self) -> Self {
        let r = self % other;
        if !r.is_zero() && self.sign() * other.sign() == Sign::Negative {
            other + r
        } else {
            r
        }
    }
    #[inline]
    fn divides(&self, other: &Self) -> bool {
        (self % other).is_zero()
    }
    #[inline]
    fn is_multiple_of(&self, other: &Self) -> bool {
        (self % other).is_zero()
    }
    #[inline]
    fn is_even(&self) -> bool {
        (self & IBig::ONE).is_zero()
    }
    #[inline]
    fn is_odd(&self) -> bool {
        (self & IBig::ONE).is_one()
    }
    #[inline]
    fn gcd(&self, other: &Self) -> Self {
        Gcd::gcd(self, other).into()
    }
    #[inline]
    fn lcm(&self, other: &Self) -> Self {
        if self.is_zero() && other.is_zero() {
            IBig::ZERO
        } else {
            self / Gcd::gcd(self, other) * other
        }
    }
    #[inline]
    fn extended_gcd(&self, other: &Self) -> num_integer::ExtendedGcd<Self> {
        let (g, x, y) = ExtendedGcd::gcd_ext(self, other);
        num_integer::ExtendedGcd {
            gcd: g.into(),
            x,
            y,
        }
    }
}

impl num_integer::Roots for IBig {
    #[inline]
    fn sqrt(&self) -> Self {
        SquareRoot::sqrt(self).into()
    }
    #[inline]
    fn cbrt(&self) -> Self {
        CubicRoot::cbrt(self)
    }
    #[inline]
    fn nth_root(&self, n: u32) -> Self {
        self.nth_root(n as usize)
    }
}