1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use dashu_base::{CubicRoot, CubicRootRem, Sign, SquareRoot, SquareRootRem};

use crate::{
    error::{panic_root_negative, panic_root_zeroth},
    ibig::IBig,
    ubig::UBig,
};

impl UBig {
    /// Calculate the nth-root of the integer rounding towards zero
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::UBig;
    /// assert_eq!(UBig::from(4u8).nth_root(2), UBig::from(2u8));
    /// assert_eq!(UBig::from(4u8).nth_root(3), UBig::from(1u8));
    /// assert_eq!(UBig::from(1024u16).nth_root(5), UBig::from(4u8));
    /// ```
    ///
    /// # Panics
    ///
    /// If `n` is zero
    #[inline]
    pub fn nth_root(&self, n: usize) -> UBig {
        UBig(self.repr().nth_root(n))
    }
}

impl SquareRoot for UBig {
    type Output = UBig;
    #[inline]
    fn sqrt(&self) -> Self::Output {
        UBig(self.repr().sqrt())
    }
}

impl SquareRootRem for UBig {
    type Output = UBig;
    #[inline]
    fn sqrt_rem(&self) -> (Self, Self) {
        let (s, r) = self.repr().sqrt_rem();
        (UBig(s), UBig(r))
    }
}

impl CubicRoot for UBig {
    type Output = UBig;
    #[inline]
    fn cbrt(&self) -> Self::Output {
        self.nth_root(3)
    }
}

impl CubicRootRem for UBig {
    type Output = UBig;
    #[inline]
    fn cbrt_rem(&self) -> (Self::Output, Self) {
        let c = self.nth_root(3);
        let r = self - c.pow(3);
        (c, r)
    }
}

impl IBig {
    /// Calculate the nth-root of the integer rounding towards zero
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::IBig;
    /// assert_eq!(IBig::from(4).nth_root(2), IBig::from(2));
    /// assert_eq!(IBig::from(-4).nth_root(3), IBig::from(-1));
    /// assert_eq!(IBig::from(-1024).nth_root(5), IBig::from(-4));
    /// ```
    ///
    /// # Panics
    ///
    /// If `n` is zero, or if `n` is even when the integer is negative.
    #[inline]
    pub fn nth_root(&self, n: usize) -> IBig {
        if n == 0 {
            panic_root_zeroth()
        }

        let (sign, mag) = self.as_sign_repr();
        if sign == Sign::Negative && n % 2 == 0 {
            panic_root_negative()
        }

        IBig(mag.nth_root(n).with_sign(sign))
    }
}

impl SquareRoot for IBig {
    type Output = UBig;
    #[inline]
    fn sqrt(&self) -> UBig {
        let (sign, mag) = self.as_sign_repr();
        if sign == Sign::Negative {
            panic_root_negative()
        }
        UBig(mag.sqrt())
    }
}

impl CubicRoot for IBig {
    type Output = IBig;
    #[inline]
    fn cbrt(&self) -> IBig {
        let (sign, mag) = self.as_sign_repr();
        if sign == Sign::Negative {
            panic_root_negative()
        }
        IBig(mag.nth_root(3).with_sign(sign))
    }
}

mod repr {
    use super::*;
    use crate::{
        add,
        arch::word::Word,
        buffer::Buffer,
        memory::MemoryAllocation,
        mul,
        primitive::{extend_word, shrink_dword, WORD_BITS, WORD_BITS_USIZE},
        repr::{
            Repr,
            TypedReprRef::{self, *},
        },
        root, shift, shift_ops,
    };
    use dashu_base::{SquareRoot, SquareRootRem};

    impl<'a> TypedReprRef<'a> {
        #[inline]
        pub fn sqrt(self) -> Repr {
            match self {
                RefSmall(dw) => {
                    if let Some(w) = shrink_dword(dw) {
                        Repr::from_word(w.sqrt() as Word)
                    } else {
                        Repr::from_word(dw.sqrt())
                    }
                }
                RefLarge(words) => sqrt_rem_large(words, true).0,
            }
        }

        #[inline]
        pub fn sqrt_rem(self) -> (Repr, Repr) {
            match self {
                RefSmall(dw) => {
                    if let Some(w) = shrink_dword(dw) {
                        let (s, r) = w.sqrt_rem();
                        (Repr::from_word(s as Word), Repr::from_word(r))
                    } else {
                        let (s, r) = dw.sqrt_rem();
                        (Repr::from_word(s), Repr::from_dword(r))
                    }
                }
                RefLarge(words) => sqrt_rem_large(words, false),
            }
        }
    }

    fn sqrt_rem_large(words: &[Word], root_only: bool) -> (Repr, Repr) {
        // first shift the words so that there are even words and
        // the top word is normalized. Note: shift <= 2 * WORD_BITS - 2
        let shift = WORD_BITS_USIZE * (words.len() & 1)
            + (words.last().unwrap().leading_zeros() & !1) as usize;
        let n = (words.len() + 1) / 2;
        let mut buffer = shift_ops::repr::shl_large_ref(words, shift).into_buffer();
        let mut out = Buffer::allocate(n);
        out.push_zeros(n);

        let mut allocation = MemoryAllocation::new(root::memory_requirement_sqrt_rem(n));
        let r_top = root::sqrt_rem(&mut out, &mut buffer, &mut allocation.memory());

        // afterwards, s = out[..], r = buffer[..n] + r_top << n*WORD_BITS
        // then recover the result if shift != 0
        if shift != 0 {
            // to get the final result, let s0 = s mod 2^(shift/2), then
            // 2^shift*n = (s-s0)^2 + 2s*s0 - s0^2 + r, so final r = (r + 2s*s0 - s0^2) / 2^shift
            if !root_only {
                let s0 = out[0] & ((1 << (shift / 2)) - 1);
                let c1 = mul::add_mul_word_in_place(&mut buffer[..n], 2 * s0, &out);
                let c2 =
                    add::sub_dword_in_place(&mut buffer[..n], extend_word(s0) * extend_word(s0));
                buffer[n] = r_top as Word + c1 - c2 as Word;
            }

            // s >>= shift/2, r >>= shift
            let _ = shift::shr_in_place(&mut out, shift as u32 / 2);
            if !root_only {
                if shift > WORD_BITS_USIZE {
                    shift::shr_in_place_one_word(&mut buffer);
                    buffer.truncate(n);
                } else {
                    buffer.truncate(n + 1);
                }
                let _ = shift::shr_in_place(&mut buffer, shift as u32 % WORD_BITS);
            }
        } else if !root_only {
            buffer[n] = r_top as Word;
            buffer.truncate(n + 1);
        }

        (Repr::from_buffer(out), Repr::from_buffer(buffer))
    }

    impl<'a> TypedReprRef<'a> {
        pub fn nth_root(self, n: usize) -> Repr {
            match n {
                0 => panic_root_zeroth(),
                1 => return Repr::from_ref(self),
                2 => return self.sqrt(),
                _ => {}
            }

            // shortcut
            let bits = self.bit_len();
            if bits <= n {
                // the result must be 1
                return Repr::one();
            }

            // then use newton's method
            let nm1 = n - 1;
            let mut guess = UBig::ONE << (self.bit_len() / n); // underestimate
            let next = |x: &UBig| {
                let y = UBig(self / x.pow(nm1).into_repr());
                (y + x * nm1) / n
            };

            let mut fixpoint = next(&guess);
            // first go up then go down, to ensure an underestimate
            while fixpoint > guess {
                guess = fixpoint;
                fixpoint = next(&guess);
            }
            while fixpoint < guess {
                guess = fixpoint;
                fixpoint = next(&guess);
            }
            guess.0
        }
    }
}