1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
//! Logarithm
use crate::{ibig::IBig, ops::EstimatedLog2, ubig::UBig};
impl UBig {
/// Calculate the (truncated) logarithm of the [UBig]
///
/// This function could takes a long time when the integer is very large.
/// In applications where an exact result is not necessary,
/// [log2_bounds][UBig::log2_bounds] could be used.
///
/// # Panics
///
/// Panics if the number is 0, or the base is 0 or 1
///
/// # Examples
///
/// ```
/// # use dashu_int::UBig;
/// let base = UBig::from(3u8);
/// assert_eq!(UBig::from(81u8).ilog(&base), 4);
/// assert_eq!(UBig::from(1000u16).ilog(&base), 6);
/// ```
#[inline]
pub fn ilog(&self, base: &UBig) -> usize {
self.repr().log(base.repr()).0
}
}
impl EstimatedLog2 for UBig {
#[inline]
fn log2_bounds(&self) -> (f32, f32) {
self.repr().log2_bounds()
}
}
impl IBig {
/// Calculate the (truncated) logarithm of the magnitude of [IBig]
///
/// This function could takes a long time when the integer is very large.
/// In applications where an exact result is not necessary,
/// [log2_bounds][IBig::log2_bounds] could be used.
///
/// # Panics
///
/// Panics if the number is 0, or the base is 0 or 1
///
/// # Examples
///
/// ```
/// # use dashu_int::{UBig, IBig};
/// let base = UBig::from(3u8);
/// assert_eq!(IBig::from(-81).ilog(&base), 4);
/// assert_eq!(IBig::from(-1000).ilog(&base), 6);
/// ```
#[inline]
pub fn ilog(&self, base: &UBig) -> usize {
self.as_sign_repr().1.log(base.repr()).0
}
}
impl EstimatedLog2 for IBig {
#[inline]
fn log2_bounds(&self) -> (f32, f32) {
self.as_sign_repr().1.log2_bounds()
}
}
pub(crate) mod repr {
use core::cmp::Ordering;
use dashu_base::EstimatedLog2;
use crate::{
arch::word::{DoubleWord, Word},
buffer::Buffer,
cmp::cmp_in_place,
div,
error::panic_invalid_log_oprand,
helper_macros::debug_assert_zero,
math::max_exp_in_word,
mul, mul_ops, pow,
primitive::{extend_word, highest_dword, shrink_dword, split_dword, WORD_BITS_USIZE},
radix,
repr::{
Repr,
TypedReprRef::{self, *},
},
};
impl TypedReprRef<'_> {
/// Floor logarithm, returns (log(self), base^log(self))
pub fn log(self, base: TypedReprRef<'_>) -> (usize, Repr) {
// shortcuts
if let RefSmall(dw) = base {
match dw {
0 | 1 => panic_invalid_log_oprand(),
2 => {
return (
self.bit_len() - 1,
Repr::zero().into_typed().set_bit(self.bit_len()),
)
}
b if b.is_power_of_two() => {
let base_bits = b.trailing_zeros() as usize;
let exp = (self.bit_len() - 1) / base_bits;
return (exp, Repr::zero().into_typed().set_bit(exp * base_bits));
}
_ => {}
}
}
match (self, base) {
(RefSmall(dword), RefSmall(base_dword)) => log_dword(dword, base_dword),
(RefSmall(_), RefLarge(_)) => (0, Repr::one()),
(RefLarge(words), RefSmall(base_dword)) => {
if let Some(base_word) = shrink_dword(base_dword) {
log_word_base(words, base_word)
} else {
let mut buffer: [Word; 2] = [0; 2];
let (lo, hi) = split_dword(base_dword);
buffer[0] = lo;
buffer[1] = hi;
log_large(words, &buffer)
}
}
(RefLarge(words), RefLarge(base_words)) => match cmp_in_place(words, base_words) {
Ordering::Less => (0, Repr::one()),
Ordering::Equal => (1, Repr::from_buffer(Buffer::from(words))),
Ordering::Greater => log_large(words, base_words),
},
}
}
pub fn log2_bounds(self) -> (f32, f32) {
match self {
RefSmall(dword) => dword.log2_bounds(),
RefLarge(words) => log2_bounds_large(words),
}
}
}
fn log_dword(target: DoubleWord, base: DoubleWord) -> (usize, Repr) {
debug_assert!(base > 1);
// shortcuts
match target {
0 => panic_invalid_log_oprand(),
1 => return (0, Repr::one()),
i if i < base => return (0, Repr::one()),
i if i == base => return (1, Repr::from_dword(base)),
_ => {}
}
let log2_self = target.log2_bounds().0;
let log2_base = base.log2_bounds().1;
let mut est = (log2_self / log2_base) as u32; // float to int is underestimate
let mut est_pow = base.pow(est);
assert!(est_pow <= target);
while let Some(next_pow) = est_pow.checked_mul(base) {
let cmp = next_pow.cmp(&target);
if cmp.is_le() {
est_pow = next_pow;
est += 1;
}
if cmp.is_ge() {
break;
}
}
(est as usize, Repr::from_dword(est_pow))
}
pub(crate) fn log_word_base(target: &[Word], base: Word) -> (usize, Repr) {
let log2_self = log2_bounds_large(target).0;
let (wexp, wbase) = if base == 10 {
// specialize for base 10, which is cached in radix_info
(radix::RADIX10_INFO.digits_per_word, radix::RADIX10_INFO.range_per_word)
} else {
max_exp_in_word(base)
};
let log2_wbase = wbase.log2_bounds().1;
let mut est = (log2_self * wexp as f32 / log2_wbase) as usize; // est >= 1
let mut est_pow = if est == 1 {
Repr::from_word(base)
} else {
pow::repr::pow_word_base(base, est)
}
.into_buffer();
assert!(cmp_in_place(&est_pow, target).is_le());
// first proceed by multiplying wbase, which should happen very rarely
while est_pow.len() < target.len() {
if est_pow.len() == target.len() - 1 {
let target_hi = highest_dword(target);
let next_hi = (extend_word(*est_pow.last().unwrap()) + 1) * extend_word(wbase); // overestimate
if next_hi > target_hi {
break;
}
}
let carry = mul::mul_word_in_place(&mut est_pow, wbase);
est_pow.push_resizing(carry);
est += wexp;
}
// then proceed by multiplying base, which can require a few steps
loop {
match cmp_in_place(&est_pow, target) {
Ordering::Less => {
let carry = mul::mul_word_in_place(&mut est_pow, base);
est_pow.push_resizing(carry);
est += 1;
}
Ordering::Equal => break,
Ordering::Greater => {
// recover the over estimate
debug_assert_zero!(div::div_by_word_in_place(&mut est_pow, base));
est -= 1;
break;
}
}
}
(est, Repr::from_buffer(est_pow))
}
fn log_large(target: &[Word], base: &[Word]) -> (usize, Repr) {
debug_assert!(cmp_in_place(target, base).is_ge()); // this ensures est >= 1
// first estimates the result
let log2_self = log2_bounds_large(target).0;
let log2_base = log2_bounds_large(base).1;
let mut est = (log2_self / log2_base) as usize; // float to int is underestimate
est = est.max(1); // sometimes est can be zero due to estimation error
let mut est_pow = if est == 1 {
Repr::from_buffer(Buffer::from(base))
} else if base.len() == 2 {
let base_dword = highest_dword(base);
pow::repr::pow_dword_base(base_dword, est)
} else {
pow::repr::pow_large_base(base, est)
};
assert!(cmp_in_place(est_pow.as_slice(), target).is_le());
// then fix the error by trials
loop {
let next_pow = mul_ops::repr::mul_large(est_pow.as_slice(), base);
let cmp = cmp_in_place(next_pow.as_slice(), target);
if cmp.is_le() {
est_pow = next_pow;
est += 1;
}
if cmp.is_ge() {
break;
}
}
(est, est_pow)
}
#[inline]
fn log2_bounds_large(words: &[Word]) -> (f32, f32) {
// notice that the bit length can be larger than 2^24, so the result
// cannot be exact even if the input is a power of two
let hi = highest_dword(words);
let rem_bits = (words.len() - 2) * WORD_BITS_USIZE;
let (hi_lb, hi_ub) = hi.log2_bounds();
/// Adjustment required to ensure floor or ceil operation
const ADJUST: f32 = 2. * f32::EPSILON;
let est_lb = (hi_lb + rem_bits as f32) * (1. - ADJUST);
let est_ub = (hi_ub + rem_bits as f32) * (1. + ADJUST);
(est_lb, est_ub)
}
}