1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
use dashu_base::ExtendedGcd;

use crate::{
    buffer::Buffer,
    error::panic_divide_by_invalid_modulo,
    gcd,
    helper_macros::debug_assert_zero,
    memory::MemoryAllocation,
    primitive::{locate_top_word_plus_one, lowest_dword, PrimitiveSigned},
    shift::{shl_in_place, shr_in_place},
    Sign,
};

use core::ops::{Div, DivAssign};

use super::{
    modulo::{Modulo, ModuloDoubleRaw, ModuloLargeRaw, ModuloRepr, ModuloSingleRaw},
    modulo_ring::{ModuloRingDouble, ModuloRingLarge, ModuloRingSingle},
};

impl<'a> Modulo<'a> {
    /// Multiplicative inverse.
    ///
    /// # Examples
    ///
    /// ```
    /// # use dashu_int::{modular::ModuloRing, UBig};
    /// // A Mersenne prime.
    /// let p = UBig::from(2u8).pow(127) - UBig::ONE;
    /// let ring = ModuloRing::new(p.clone());
    /// // Fermat's little theorem: a^(p-2) = a^-1 (mod p)
    /// let a = ring.convert(123);
    /// let ainv = a.clone().inv().unwrap();
    /// assert_eq!(ainv, a.pow(&(p - UBig::from(2u8))));
    /// assert_eq!((a * ainv).residue(), UBig::ONE);
    /// ```
    #[inline]
    pub fn inv(&self) -> Option<Modulo<'a>> {
        match self.repr() {
            ModuloRepr::Single(raw, ring) => ring.inv(raw).map(|v| Modulo::from_single(v, ring)),
            ModuloRepr::Double(raw, ring) => ring.inv(raw).map(|v| Modulo::from_double(v, ring)),
            ModuloRepr::Large(raw, ring) => {
                ring.inv(raw.clone()).map(|v| Modulo::from_large(v, ring))
            }
        }
    }
}

macro_rules! impl_mod_inv_for_primitive {
    ($ring:ty, $raw:ident) => {
        impl $ring {
            #[inline]
            /// Modular inverse.
            fn inv(&self, raw: &$raw) -> Option<$raw> {
                let (g, _, coeff) = self.0.divisor().gcd_ext(&raw.0 >> self.shift());
                if g != 1 {
                    return None;
                }

                let (sign, coeff) = coeff.to_sign_magnitude();
                let coeff = $raw(coeff << self.shift());
                if sign == Sign::Negative {
                    Some(self.negate(coeff))
                } else {
                    Some(coeff)
                }
            }
        }
    };
}
impl_mod_inv_for_primitive!(ModuloRingSingle, ModuloSingleRaw);
impl_mod_inv_for_primitive!(ModuloRingDouble, ModuloDoubleRaw);

impl ModuloRingLarge {
    #[inline]
    fn inv(&self, mut raw: ModuloLargeRaw) -> Option<ModuloLargeRaw> {
        // prepare modulus
        let mut modulus = Buffer::allocate_exact(self.normalized_modulus().len());
        modulus.push_slice(self.normalized_modulus());
        debug_assert_zero!(shr_in_place(&mut modulus, self.shift()));

        // prepare modulo value
        debug_assert_zero!(shr_in_place(&mut raw.0, self.shift()));
        let raw_len = locate_top_word_plus_one(&raw.0);

        // call extended gcd
        let (is_g_one, b_sign) = match raw_len {
            0 => return None,
            1 => {
                let (g, _, b_sign) = gcd::gcd_ext_word(&mut modulus, *raw.0.first().unwrap());
                (g == 1, b_sign)
            }
            2 => {
                let (g, _, b_sign) = gcd::gcd_ext_dword(&mut modulus, lowest_dword(&raw.0));
                (g == 1, b_sign)
            }
            _ => {
                let mut allocation = MemoryAllocation::new(gcd::memory_requirement_ext_exact(
                    modulus.len(),
                    raw_len,
                ));
                let (g_len, b_len, b_sign) = gcd::gcd_ext_in_place(
                    &mut modulus,
                    &mut raw.0[..raw_len],
                    &mut allocation.memory(),
                );
                modulus[b_len..].fill(0);

                // check if inverse exists
                (g_len == 1 && *raw.0.first().unwrap() == 1, b_sign)
            }
        };
        if !is_g_one {
            return None;
        }

        // return inverse
        shl_in_place(&mut modulus, self.shift());
        let mut inv = ModuloLargeRaw(modulus.into_boxed_slice());
        debug_assert!(self.is_valid(&inv));
        if b_sign == Sign::Negative {
            self.negate_in_place(&mut inv);
        }
        Some(inv)
    }
}

impl<'a> Div<Modulo<'a>> for Modulo<'a> {
    type Output = Modulo<'a>;

    #[inline]
    fn div(self, rhs: Modulo<'a>) -> Modulo<'a> {
        (&self).div(&rhs)
    }
}

impl<'a> Div<&Modulo<'a>> for Modulo<'a> {
    type Output = Modulo<'a>;

    #[inline]
    fn div(self, rhs: &Modulo<'a>) -> Modulo<'a> {
        (&self).div(rhs)
    }
}

impl<'a> Div<Modulo<'a>> for &Modulo<'a> {
    type Output = Modulo<'a>;

    #[inline]
    fn div(self, rhs: Modulo<'a>) -> Modulo<'a> {
        self.div(&rhs)
    }
}

impl<'a> Div<&Modulo<'a>> for &Modulo<'a> {
    type Output = Modulo<'a>;

    #[inline]
    fn div(self, rhs: &Modulo<'a>) -> Modulo<'a> {
        // Clippy doesn't like that div is implemented using mul.
        #[allow(clippy::suspicious_arithmetic_impl)]
        match rhs.inv() {
            None => panic_divide_by_invalid_modulo(),
            Some(inv_rhs) => self * inv_rhs,
        }
    }
}

impl<'a> DivAssign<Modulo<'a>> for Modulo<'a> {
    #[inline]
    fn div_assign(&mut self, rhs: Modulo<'a>) {
        self.div_assign(&rhs)
    }
}

impl<'a> DivAssign<&Modulo<'a>> for Modulo<'a> {
    #[inline]
    fn div_assign(&mut self, rhs: &Modulo<'a>) {
        *self = (&*self).div(rhs)
    }
}