1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use crate::{
arch::{
ntt::{MAX_ORDER, PRIMES},
word::Word,
},
modular::{modulo::ModuloSingleRaw, modulo_ring::ModuloRingSingle},
};
pub const NUM_PRIMES: usize = 3;
pub struct Prime {
pub(crate) prime: Word,
pub(crate) max_order_root: Word,
}
const FIELDS: [ModuloRingSingle; NUM_PRIMES] = [
ModuloRingSingle::new(PRIMES[0].prime),
ModuloRingSingle::new(PRIMES[1].prime),
ModuloRingSingle::new(PRIMES[2].prime),
];
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct RingElement {
val: [ModuloSingleRaw; NUM_PRIMES],
}
impl From<Word> for RingElement {
fn from(x: Word) -> RingElement {
RingElement {
val: [
ModuloSingleRaw::from_word(x, &FIELDS[0]),
ModuloSingleRaw::from_word(x, &FIELDS[1]),
ModuloSingleRaw::from_word(x, &FIELDS[2]),
],
}
}
}
impl RingElement {
const fn zero() -> RingElement {
RingElement {
val: [
ModuloSingleRaw::from_word(0, &FIELDS[0]),
ModuloSingleRaw::from_word(0, &FIELDS[1]),
ModuloSingleRaw::from_word(0, &FIELDS[2]),
],
}
}
const fn mul(self, rhs: RingElement) -> RingElement {
RingElement {
val: [
FIELDS[0].mul(self.val[0], rhs.val[0]),
FIELDS[1].mul(self.val[1], rhs.val[1]),
FIELDS[2].mul(self.val[2], rhs.val[2]),
],
}
}
const fn inverse(self) -> RingElement {
RingElement {
val: [
FIELDS[0].pow_word(self.val[0], PRIMES[0].prime - 2),
FIELDS[1].pow_word(self.val[1], PRIMES[1].prime - 2),
FIELDS[2].pow_word(self.val[2], PRIMES[2].prime - 2),
],
}
}
}
const MAX_ORDER_ROOT: RingElement = RingElement {
val: [
ModuloSingleRaw::from_word(PRIMES[0].max_order_root, &FIELDS[0]),
ModuloSingleRaw::from_word(PRIMES[1].max_order_root, &FIELDS[1]),
ModuloSingleRaw::from_word(PRIMES[2].max_order_root, &FIELDS[2]),
],
};
type RootTable = [RingElement; MAX_ORDER as usize + 1];
#[allow(dead_code)]
static ROOTS: RootTable = generate_roots(MAX_ORDER_ROOT);
#[allow(dead_code)]
static INVERSE_ROOTS: RootTable = generate_roots(MAX_ORDER_ROOT.inverse());
const fn generate_roots(max_order_root: RingElement) -> RootTable {
let mut table = [RingElement::zero(); MAX_ORDER as usize + 1];
let mut order = MAX_ORDER as usize;
table[order] = max_order_root;
while order > 0 {
table[order - 1] = table[order].mul(table[order]);
order -= 1;
}
table
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_inverse() {
let one: Word = 1;
let one = RingElement::from(one);
assert_eq!(MAX_ORDER_ROOT.inverse().mul(MAX_ORDER_ROOT), one);
assert_eq!(MAX_ORDER_ROOT.inverse().inverse(), MAX_ORDER_ROOT);
}
#[test]
fn test_roots() {
let one: Word = 1;
let one = RingElement::from(one);
assert_eq!(ROOTS[0], one);
assert_ne!(ROOTS[1], one);
assert_eq!(INVERSE_ROOTS[0], one);
assert_ne!(INVERSE_ROOTS[1], one);
}
}