1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//! Operators for finding greatest common divisor.

use crate::{
    helper_macros::{forward_ibig_binop_to_repr, forward_ubig_binop_to_repr},
    ibig::IBig,
    ubig::UBig,
    Sign,
};
use dashu_base::ring::{ExtendedGcd, Gcd};

forward_ubig_binop_to_repr!(impl Gcd, gcd);

macro_rules! impl_ubig_gcd_ext {
    ($repr0:ident, $repr1:ident) => {{
        let (r, s, t) = $repr0.gcd_ext($repr1);
        (UBig(r), IBig(s), IBig(t))
    }};
}
forward_ubig_binop_to_repr!(
    impl ExtendedGcd, gcd_ext -> (UBig, IBig, IBig),
    OutputGcd = UBig, OutputCoeff = IBig,
    impl_ubig_gcd_ext
);

macro_rules! impl_ibig_gcd {
    ($sign0:ident, $mag0:ident, $sign1:ident, $mag1:ident) => {{
        let _unused = ($sign0, $sign1);
        UBig($mag0.gcd($mag1))
    }};
}
forward_ibig_binop_to_repr!(impl Gcd, gcd, Output = UBig, impl_ibig_gcd);

macro_rules! impl_ibig_gcd_ext {
    ($sign0:ident, $mag0:ident, $sign1:ident, $mag1:ident) => {{
        let (r, s, t) = $mag0.gcd_ext($mag1);
        (UBig(r), $sign0 * IBig(s), $sign1 * IBig(t))
    }};
}
forward_ibig_binop_to_repr!(
    impl ExtendedGcd, gcd_ext -> (UBig, IBig, IBig),
    OutputGcd = UBig, OutputCoeff = IBig,
    impl_ibig_gcd_ext
);

mod repr {
    use super::*;
    use crate::{
        add,
        arch::word::{DoubleWord, Word},
        buffer::Buffer,
        cmp, div, gcd, memory,
        memory::MemoryAllocation,
        mul,
        primitive::{shrink_dword, PrimitiveSigned},
        repr::{
            Repr,
            TypedRepr::{self, *},
            TypedReprRef::{self, *},
        },
    };
    use core::cmp::Ordering;

    impl<'l, 'r> Gcd<TypedReprRef<'r>> for TypedReprRef<'l> {
        type Output = Repr;

        fn gcd(self, rhs: TypedReprRef) -> Repr {
            match (self, rhs) {
                (RefSmall(dword0), RefSmall(dword1)) => Repr::from_dword(dword0.gcd(dword1)),
                (RefSmall(dword0), RefLarge(words1)) => gcd_large_dword(words1, dword0),
                (RefLarge(words0), RefSmall(dword1)) => gcd_large_dword(words0, dword1),
                (RefLarge(words0), RefLarge(words1)) => gcd_large(words0.into(), words1.into()),
            }
        }
    }

    impl<'l> Gcd<TypedRepr> for TypedReprRef<'l> {
        type Output = Repr;
        #[inline]
        fn gcd(self, rhs: TypedRepr) -> Self::Output {
            self.gcd(rhs.as_ref())
        }
    }

    impl<'r> Gcd<TypedReprRef<'r>> for TypedRepr {
        type Output = Repr;
        #[inline]
        fn gcd(self, rhs: TypedReprRef) -> Self::Output {
            self.as_ref().gcd(rhs)
        }
    }

    impl Gcd<TypedRepr> for TypedRepr {
        type Output = Repr;
        #[inline]
        fn gcd(self, rhs: TypedRepr) -> Self::Output {
            self.as_ref().gcd(rhs.as_ref())
        }
    }

    /// Perform gcd on a large number with a `DoubleWord`.
    #[inline]
    fn gcd_large_dword(buffer: &[Word], rhs: DoubleWord) -> Repr {
        if rhs == 0 {
            Repr::from_buffer(buffer.into())
        } else if let Some(word) = shrink_dword(rhs) {
            // reduce the large number by single word rhs
            let rem = div::rem_by_word(buffer, word);
            if rem == 0 {
                Repr::from_word(word)
            } else {
                Repr::from_word(rem.gcd(word))
            }
        } else {
            // reduce the large number by double word rhs
            let rem = div::rem_by_dword(buffer, rhs);
            if rem == 0 {
                Repr::from_dword(rhs)
            } else {
                Repr::from_dword(rem.gcd(rhs))
            }
        }
    }

    /// Perform gcd on two large numbers.
    #[inline]
    fn gcd_large(mut lhs: Buffer, mut rhs: Buffer) -> Repr {
        // make sure lhs > rhs
        match cmp::cmp_in_place(&lhs, &rhs) {
            Ordering::Greater => {}
            Ordering::Equal => return Repr::from_buffer(lhs),
            Ordering::Less => core::mem::swap(&mut lhs, &mut rhs),
        };

        let mut allocation =
            MemoryAllocation::new(gcd::memory_requirement_exact(lhs.len(), rhs.len()));

        let (len, swapped) = gcd::gcd_in_place(&mut lhs, &mut rhs, &mut allocation.memory());
        if swapped {
            rhs.truncate(len);
            Repr::from_buffer(rhs)
        } else {
            lhs.truncate(len);
            Repr::from_buffer(lhs)
        }
    }

    impl<'l, 'r> ExtendedGcd<TypedReprRef<'r>> for TypedReprRef<'l> {
        type OutputCoeff = Repr;
        type OutputGcd = Repr;

        fn gcd_ext(self, rhs: TypedReprRef<'r>) -> (Repr, Repr, Repr) {
            match (self, rhs) {
                (RefSmall(dword0), RefSmall(dword1)) => gcd_ext_dword(dword0, dword1),
                (RefLarge(words0), RefSmall(dword1)) => gcd_ext_large_dword(words0.into(), dword1),
                (RefSmall(dword0), RefLarge(words1)) => {
                    let (g, s, t) = gcd_ext_large_dword(words1.into(), dword0);
                    (g, t, s)
                }
                (RefLarge(words0), RefLarge(words1)) => gcd_ext_large(words0.into(), words1.into()),
            }
        }
    }

    impl<'r> ExtendedGcd<TypedReprRef<'r>> for TypedRepr {
        type OutputCoeff = Repr;
        type OutputGcd = Repr;

        fn gcd_ext(self, rhs: TypedReprRef<'r>) -> (Repr, Repr, Repr) {
            match (self, rhs) {
                (Small(dword0), RefSmall(dword1)) => gcd_ext_dword(dword0, dword1),
                (Large(buffer0), RefSmall(dword1)) => gcd_ext_large_dword(buffer0, dword1),
                (Small(dword0), RefLarge(words1)) => {
                    let (g, s, t) = gcd_ext_large_dword(words1.into(), dword0);
                    (g, t, s)
                }
                (Large(buffer0), RefLarge(words1)) => gcd_ext_large(buffer0, words1.into()),
            }
        }
    }

    impl<'l> ExtendedGcd<TypedRepr> for TypedReprRef<'l> {
        type OutputCoeff = Repr;
        type OutputGcd = Repr;

        fn gcd_ext(self, rhs: TypedRepr) -> (Repr, Repr, Repr) {
            match (self, rhs) {
                (RefSmall(dword0), Small(dword1)) => gcd_ext_dword(dword0, dword1),
                (RefLarge(words0), Small(dword1)) => gcd_ext_large_dword(words0.into(), dword1),
                (RefSmall(dword0), Large(buffer1)) => {
                    let (g, s, t) = gcd_ext_large_dword(buffer1, dword0);
                    (g, t, s)
                }
                (RefLarge(words0), Large(buffer1)) => gcd_ext_large(words0.into(), buffer1),
            }
        }
    }

    impl ExtendedGcd<TypedRepr> for TypedRepr {
        type OutputCoeff = Repr;
        type OutputGcd = Repr;

        #[inline]
        fn gcd_ext(self, rhs: TypedRepr) -> (Repr, Repr, Repr) {
            match (self, rhs) {
                (Small(dword0), Small(dword1)) => gcd_ext_dword(dword0, dword1),
                (Large(buffer0), Small(dword1)) => gcd_ext_large_dword(buffer0, dword1),
                (Small(dword0), Large(buffer1)) => {
                    let (g, s, t) = gcd_ext_large_dword(buffer1, dword0);
                    (g, t, s)
                }
                (Large(buffer0), Large(buffer1)) => gcd_ext_large(buffer0, buffer1),
            }
        }
    }

    #[inline]
    fn gcd_ext_dword(lhs: DoubleWord, rhs: DoubleWord) -> (Repr, Repr, Repr) {
        let (g, s, t) = lhs.gcd_ext(rhs);
        let (s_sign, s_mag) = s.to_sign_magnitude();
        let (t_sign, t_mag) = t.to_sign_magnitude();
        (
            Repr::from_dword(g),
            Repr::from_dword(s_mag).with_sign(s_sign),
            Repr::from_dword(t_mag).with_sign(t_sign),
        )
    }

    /// Perform extended gcd on a large number with a `Word`.
    #[inline]
    fn gcd_ext_large_dword(mut buffer: Buffer, rhs: DoubleWord) -> (Repr, Repr, Repr) {
        if rhs == 0 {
            (Repr::from_buffer(buffer), Repr::one(), Repr::zero())
        } else if let Some(word) = shrink_dword(rhs) {
            // reduce the large number by single word rhs
            let (g, a, b_sign) = gcd::gcd_ext_word(&mut buffer, word);
            let (a_sign, a_mag) = a.to_sign_magnitude();
            (
                Repr::from_word(g),
                Repr::from_word(a_mag).with_sign(a_sign),
                Repr::from_buffer(buffer).with_sign(b_sign),
            )
        } else {
            let (g, a, b_sign) = gcd::gcd_ext_dword(&mut buffer, rhs);
            let (a_sign, a_mag) = a.to_sign_magnitude();
            (
                Repr::from_dword(g),
                Repr::from_dword(a_mag).with_sign(a_sign),
                Repr::from_buffer(buffer).with_sign(b_sign),
            )
        }
    }

    /// Perform extended gcd on two large numbers.
    #[inline]
    fn gcd_ext_large(mut lhs: Buffer, mut rhs: Buffer) -> (Repr, Repr, Repr) {
        // make sure lhs > rhs
        let swapped = match cmp::cmp_in_place(&lhs, &rhs) {
            Ordering::Greater => false,
            Ordering::Equal => return (Repr::from_buffer(lhs), Repr::one(), Repr::zero()),
            Ordering::Less => {
                core::mem::swap(&mut lhs, &mut rhs);
                true
            }
        };
        let (lhs_len, rhs_len) = (lhs.len(), rhs.len());

        // allocate memory
        let clone_mem = memory::array_layout::<Word>(lhs_len + rhs_len);
        let gcd_mem = gcd::memory_requirement_ext_exact(lhs_len, rhs_len);
        let post_mem = memory::add_layout(
            // temporary space to store residue
            memory::array_layout::<Word>(lhs_len + rhs_len),
            memory::max_layout(
                // memory required for post processing: one multiplication + one division
                mul::memory_requirement_exact(lhs_len + rhs_len, rhs_len),
                div::memory_requirement_exact(lhs_len + rhs_len + 1, rhs_len),
            ),
        );
        let mut allocation = MemoryAllocation::new(memory::add_layout(
            clone_mem,
            memory::max_layout(gcd_mem, post_mem),
        ));
        let mut memory = allocation.memory();

        // copy oprands for post processing
        let (lhs_clone, mut memory) = memory.allocate_slice_copy(&lhs);
        let (rhs_clone, mut memory) = memory.allocate_slice_copy(&rhs);

        // actual computation
        let (g_len, b_len, b_sign) = gcd::gcd_ext_in_place(&mut lhs, &mut rhs, &mut memory);

        // the result from the internal function is g = gcd(lhs, rhs), b s.t g = b*rhs mod lhs
        // post processing: a = (g - rhs * b) / lhs
        rhs.truncate(g_len);
        let g = rhs;
        lhs.truncate(b_len);
        let b = lhs;

        // residue = g - rhs * b
        let brhs_len = rhs_clone.len() + b.len();
        let (residue, mut memory) = memory.allocate_slice_fill(brhs_len + 1, 0);
        mul::multiply(&mut residue[..brhs_len], rhs_clone, &b, &mut memory);
        match b_sign {
            Sign::Negative => {
                *residue.last_mut().unwrap() = add::add_in_place(residue, &g) as Word;
            }
            Sign::Positive => {
                let overflow = add::sub_in_place(residue, &g);
                debug_assert!(!overflow);
            }
        };

        // a = residue / lhs
        let (shift, fast_div_top) = div::normalize(lhs_clone);
        let overflow =
            div::div_rem_unshifted_in_place(residue, lhs_clone, shift, fast_div_top, &mut memory);
        let mut a = Buffer::from(&residue[lhs_len..]);
        debug_assert_eq!(residue[0], 0); // this division is an exact division
        if overflow > 0 {
            a.push(overflow);
        }

        let g = Repr::from_buffer(g);
        let a = Repr::from_buffer(a).with_sign(-b_sign);
        let b = Repr::from_buffer(b).with_sign(b_sign);
        if swapped {
            (g, b, a)
        } else {
            (g, a, b)
        }
    }
}