1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
use dashu_int::{IBig, UBig};

use crate::{
    error::{assert_finite, assert_finite_operands},
    fbig::FBig,
    helper_macros,
    repr::{Context, Repr, Word},
    round::{Round, Rounded},
};
use core::ops::{Mul, MulAssign};

impl<'l, 'r, R: Round, const B: Word> Mul<&'r FBig<R, B>> for &'l FBig<R, B> {
    type Output = FBig<R, B>;

    #[inline]
    fn mul(self, rhs: &FBig<R, B>) -> Self::Output {
        assert_finite_operands(&self.repr, &rhs.repr);

        let context = Context::max(self.context, rhs.context);
        let repr = Repr::new(
            &self.repr.significand * &rhs.repr.significand,
            self.repr.exponent + rhs.repr.exponent,
        );
        FBig::new(context.repr_round(repr).value(), context)
    }
}

impl<'r, R: Round, const B: Word> Mul<&'r FBig<R, B>> for FBig<R, B> {
    type Output = FBig<R, B>;

    #[inline]
    fn mul(self, rhs: &FBig<R, B>) -> Self::Output {
        assert_finite_operands(&self.repr, &rhs.repr);

        let context = Context::max(self.context, rhs.context);
        let repr = Repr::new(
            self.repr.significand * &rhs.repr.significand,
            self.repr.exponent + rhs.repr.exponent,
        );
        FBig::new(context.repr_round(repr).value(), context)
    }
}

impl<'l, R: Round, const B: Word> Mul<FBig<R, B>> for &'l FBig<R, B> {
    type Output = FBig<R, B>;

    #[inline]
    fn mul(self, rhs: FBig<R, B>) -> Self::Output {
        assert_finite_operands(&self.repr, &rhs.repr);

        let context = Context::max(self.context, rhs.context);
        let repr = Repr::new(
            &self.repr.significand * rhs.repr.significand,
            self.repr.exponent + rhs.repr.exponent,
        );
        FBig::new(context.repr_round(repr).value(), context)
    }
}

impl<R: Round, const B: Word> Mul<FBig<R, B>> for FBig<R, B> {
    type Output = FBig<R, B>;

    #[inline]
    fn mul(self, rhs: FBig<R, B>) -> Self::Output {
        assert_finite_operands(&self.repr, &rhs.repr);

        let context = Context::max(self.context, rhs.context);
        let repr = Repr::new(
            self.repr.significand * rhs.repr.significand,
            self.repr.exponent + rhs.repr.exponent,
        );
        FBig::new(context.repr_round(repr).value(), context)
    }
}

helper_macros::impl_binop_assign_by_taking!(impl MulAssign<Self>, mul_assign, mul);

macro_rules! impl_mul_primitive_with_fbig {
    ($($t:ty)*) => {$(
        helper_macros::impl_binop_with_primitive!(impl Mul<$t>, mul);
        helper_macros::impl_binop_assign_with_primitive!(impl MulAssign<$t>, mul_assign);
    )*};
}
impl_mul_primitive_with_fbig!(u8 u16 u32 u64 u128 usize UBig i8 i16 i32 i64 i128 isize IBig);

impl<R: Round, const B: Word> FBig<R, B> {
    /// Compute the square of this number (`self * self`)
    ///
    /// # Examples
    ///
    /// ```
    /// # use core::str::FromStr;
    /// # use dashu_base::ParseError;
    /// # use dashu_float::DBig;
    /// let a = DBig::from_str("-1.234")?;
    /// assert_eq!(a.sqr(), DBig::from_str("1.523")?);
    /// # Ok::<(), ParseError>(())
    /// ```
    #[inline]
    pub fn sqr(&self) -> Self {
        self.context.sqr(&self.repr).value()
    }

    /// Compute the cubic of this number (`self * self * self`)
    ///
    /// # Examples
    ///
    /// ```
    /// # use core::str::FromStr;
    /// # use dashu_base::ParseError;
    /// # use dashu_float::DBig;
    /// let a = DBig::from_str("-1.234")?;
    /// assert_eq!(a.cubic(), DBig::from_str("-1.879")?);
    /// # Ok::<(), ParseError>(())
    /// ```
    #[inline]
    pub fn cubic(&self) -> Self {
        self.context.cubic(&self.repr).value()
    }
}

impl<R: Round> Context<R> {
    /// Multiply two floating point numbers under this context.
    ///
    /// # Examples
    ///
    /// ```
    /// # use core::str::FromStr;
    /// # use dashu_base::ParseError;
    /// # use dashu_float::DBig;
    /// use dashu_base::Approximation::*;
    /// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
    ///
    /// let context = Context::<HalfAway>::new(2);
    /// let a = DBig::from_str("-1.234")?;
    /// let b = DBig::from_str("6.789")?;
    /// assert_eq!(
    ///     context.mul(&a.repr(), &b.repr()),
    ///     Inexact(DBig::from_str("-8.4")?, SubOne)
    /// );
    /// # Ok::<(), ParseError>(())
    /// ```
    pub fn mul<const B: Word>(&self, lhs: &Repr<B>, rhs: &Repr<B>) -> Rounded<FBig<R, B>> {
        assert_finite_operands(lhs, rhs);

        // at most double the precision is required to get a correct result
        // shrink the input operands if necessary
        let max_precision = if self.is_limited() {
            self.precision * 2
        } else {
            usize::MAX
        };

        let lhs_shrink;
        let lhs_repr = if lhs.digits() > max_precision {
            lhs_shrink = Context::<R>::new(max_precision).repr_round_ref(lhs).value();
            &lhs_shrink
        } else {
            lhs
        };

        let rhs_shrink;
        let rhs_repr = if rhs.digits() > max_precision {
            rhs_shrink = Context::<R>::new(max_precision).repr_round_ref(rhs).value();
            &rhs_shrink
        } else {
            rhs
        };

        let repr = Repr::new(
            &lhs_repr.significand * &rhs_repr.significand,
            lhs_repr.exponent + rhs_repr.exponent,
        );
        self.repr_round(repr).map(|v| FBig::new(v, *self))
    }

    /// Calculate the square of the floating point number under this context.
    ///
    /// # Examples
    ///
    /// ```
    /// # use core::str::FromStr;
    /// # use dashu_base::ParseError;
    /// # use dashu_float::DBig;
    /// use dashu_base::Approximation::*;
    /// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
    ///
    /// let context = Context::<HalfAway>::new(2);
    /// let a = DBig::from_str("-1.234")?;
    /// assert_eq!(context.sqr(&a.repr()), Inexact(DBig::from_str("1.5")?, NoOp));
    /// # Ok::<(), ParseError>(())
    /// ```
    pub fn sqr<const B: Word>(&self, f: &Repr<B>) -> Rounded<FBig<R, B>> {
        assert_finite(f);

        // shrink the input operands if necessary
        let max_precision = if self.is_limited() {
            self.precision * 2
        } else {
            usize::MAX
        };

        let f_shrink;
        let f_repr = if f.digits() > max_precision {
            f_shrink = Context::<R>::new(max_precision).repr_round_ref(f).value();
            &f_shrink
        } else {
            f
        };

        let repr = Repr::new(f_repr.significand.sqr().into(), 2 * f_repr.exponent);
        self.repr_round(repr).map(|v| FBig::new(v, *self))
    }

    /// Calculate the cubic of the floating point number under this context.
    ///
    /// # Examples
    ///
    /// ```
    /// # use core::str::FromStr;
    /// # use dashu_base::ParseError;
    /// # use dashu_float::DBig;
    /// use dashu_base::Approximation::*;
    /// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
    ///
    /// let context = Context::<HalfAway>::new(2);
    /// let a = DBig::from_str("-1.234")?;
    /// assert_eq!(context.cubic(&a.repr()), Inexact(DBig::from_str("-1.9")?, SubOne));
    /// # Ok::<(), ParseError>(())
    /// ```
    pub fn cubic<const B: Word>(&self, f: &Repr<B>) -> Rounded<FBig<R, B>> {
        assert_finite(f);

        // shrink the input operands if necessary
        let max_precision = if self.is_limited() {
            self.precision * 3
        } else {
            usize::MAX
        };

        let f_shrink;
        let f_repr = if f.digits() > max_precision {
            f_shrink = Context::<R>::new(max_precision).repr_round_ref(f).value();
            &f_shrink
        } else {
            f
        };

        let repr = Repr::new(f_repr.significand.cubic(), 3 * f_repr.exponent);
        self.repr_round(repr).map(|v| FBig::new(v, *self))
    }
}