1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
//! Implementation of formatters
use crate::{
fbig::FBig,
repr::{Context, Repr},
round::{mode::Zero, Round},
utils::{digit_len, split_digits_ref},
};
use core::fmt::{self, Alignment, Display, Formatter, Write};
use dashu_base::{Sign, UnsignedAbs};
use dashu_int::{IBig, Word};
trait DebugStructHelper {
/// Print the full debug info for the significand
fn field_significand<const B: Word>(&mut self, signif: &IBig) -> &mut Self;
}
impl<'a, 'b> DebugStructHelper for fmt::DebugStruct<'a, 'b> {
fn field_significand<const B: Word>(&mut self, signif: &IBig) -> &mut Self {
match B {
2 => self.field(
"significand",
&format_args!("{:?} ({} bits)", signif, digit_len::<B>(signif)),
),
10 => self.field("significand", &format_args!("{:#?}", signif)),
_ => self.field(
"significand",
&format_args!("{:?} ({} digits)", signif, digit_len::<B>(signif)),
),
}
}
}
impl<const B: Word> fmt::Debug for Repr<B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// shortcut for infinities
if self.is_infinite() {
return match self.sign() {
Sign::Positive => f.write_str("inf"),
Sign::Negative => f.write_str("-inf"),
};
}
if f.alternate() {
f.debug_struct("Repr")
.field_significand::<B>(&self.significand)
.field("exponent", &format_args!("{} ^ {}", &B, &self.exponent))
.finish()
} else {
f.write_fmt(format_args!("{:?} * {} ^ {}", &self.significand, &B, &self.exponent))
}
}
}
impl<R: Round> fmt::Debug for Context<R> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
let rnd_name = core::any::type_name::<R>();
let rnd_name = rnd_name
.rfind("::")
.map(|pos| &rnd_name[pos + 2..])
.unwrap_or(rnd_name);
f.debug_struct("Context")
.field("precision", &self.precision)
.field("rounding", &format_args!("{}", rnd_name))
.finish()
}
}
impl<const B: Word> Repr<B> {
/// Print the float number with given rounding mode. The rounding may happen if the precision option
/// of the formatter is set.
fn fmt_round<R: Round>(&self, f: &mut Formatter<'_>) -> fmt::Result {
// shortcut for infinities
if self.is_infinite() {
return match self.sign() {
Sign::Positive => f.write_str("inf"),
Sign::Negative => f.write_str("-inf"),
};
}
// first perform rounding before actual printing if necessary
let negative = self.significand.sign() == Sign::Negative;
let rounded_signif;
let (signif, exp) = if let Some(prec) = f.precision() {
let diff = prec as isize + self.exponent;
if diff < 0 {
let shift = -diff as usize;
let (signif, rem) = split_digits_ref::<B>(&self.significand, shift);
let adjust = R::round_fract::<B>(&signif, rem, shift);
rounded_signif = signif + adjust;
(&rounded_signif, self.exponent - diff)
} else {
(&self.significand, self.exponent)
}
} else {
(&self.significand, self.exponent)
};
// calculate padding if necessary
let (left_pad, right_pad) = if let Some(min_width) = f.width() {
// first calculate the with of the formatted digits without padding
let mut signif_digits = digit_len::<B>(signif);
// the leading zeros needs to be printed (when the exponent of the number is very small).
let leading_zeros = -(exp + signif_digits as isize - 1).min(0) as usize;
// the trailing zeros needs to be printed (when the exponent of the number is very large)
let mut trailing_zeros = exp.max(0) as usize;
// if the precision option is set, there might be extra trailing zeros
if let Some(prec) = f.precision() {
let diff = prec as isize + exp.min(0);
if diff > 0 {
trailing_zeros += diff as usize;
}
}
if leading_zeros == 0 {
// there is at least one digit to print (0)
signif_digits = signif_digits.max(1);
}
let has_sign = (negative || f.sign_plus()) as usize;
let has_float_point = if exp > 0 {
// if there's no fractional part, the result has the floating point
// only if the precision is set to be non-zero
f.precision().unwrap_or(0) > 0
} else {
// if there is fractional part, the result has the floating point
// if the precision is not set, or set to be non-zero
f.precision() != Some(0) // non-zero or none
} as usize;
let width = signif_digits + has_sign + has_float_point + leading_zeros + trailing_zeros;
// check alignment and calculate padding
if width >= min_width {
(0, 0)
} else if f.sign_aware_zero_pad() {
(min_width - width, 0)
} else {
match f.align() {
Some(Alignment::Left) => (0, min_width - width),
Some(Alignment::Right) | None => (min_width - width, 0),
Some(Alignment::Center) => {
let diff = min_width - width;
(diff / 2, diff - diff / 2)
}
}
}
} else {
(0, 0)
};
// print left padding
let fill = if f.sign_aware_zero_pad() {
'0'
} else {
f.fill()
};
for _ in 0..left_pad {
f.write_char(fill)?;
}
// print the actual digits
if exp < 0 {
// If the exponent is negative, then the float number has fractional part
let exp = -exp as usize;
let (int, fract) = split_digits_ref::<B>(signif, exp);
let frac_digits = digit_len::<B>(&fract);
debug_assert!(frac_digits <= exp);
// print the integral part.
if !negative && f.sign_plus() {
f.write_char('+')?;
}
if int.is_zero() {
if negative {
f.write_char('-')?;
}
f.write_char('0')?;
} else {
f.write_fmt(format_args!("{}", int.in_radix(B as u32)))?;
}
// print the fractional part, it has exactly `exp` digits (with left zero padding)
let fract = fract.unsigned_abs(); // don't print sign for fractional part
if let Some(prec) = f.precision() {
// don't print any fractional part if precision is zero
if prec != 0 {
f.write_char('.')?;
if exp >= prec {
// the fractional part should be already rounded at the beginning
debug_assert!(exp == prec);
// print padding zeros
if prec > frac_digits {
for _ in 0..prec - frac_digits {
f.write_char('0')?;
}
}
if frac_digits > 0 {
f.write_fmt(format_args!("{}", fract.in_radix(B as u32)))?;
}
} else {
// append zeros if the required precision is larger
for _ in 0..exp - frac_digits {
f.write_char('0')?;
}
f.write_fmt(format_args!("{}", fract.in_radix(B as u32)))?;
for _ in 0..prec - exp {
f.write_char('0')?;
}
}
}
} else if frac_digits > 0 {
f.write_char('.')?;
for _ in 0..(exp - frac_digits) {
f.write_char('0')?;
}
f.write_fmt(format_args!("{}", fract.in_radix(B as u32)))?;
}
} else {
// In this case, the number is actually an integer and it can be trivially formatted.
// However, when the precision option is set, we need to append zeros.
// print the significand
if !negative && f.sign_plus() {
f.write_char('+')?;
}
if signif.is_zero() {
if negative {
f.write_char('-')?;
}
f.write_char('0')?;
} else {
f.write_fmt(format_args!("{}", signif.in_radix(B as u32)))?;
}
// append zeros if needed
for _ in 0..exp {
f.write_char('0')?;
}
// print trailing zeros after the float point if the precision is set to be nonzero
if let Some(prec) = f.precision() {
if prec > 0 {
f.write_char('.')?;
for _ in 0..prec {
f.write_char('0')?;
}
}
}
};
// print right padding
for _ in 0..right_pad {
f.write_char(f.fill())?;
}
Ok(())
}
}
impl<const B: Word> Display for Repr<B> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
self.fmt_round::<Zero>(f)
}
}
impl<R: Round, const B: Word> fmt::Debug for FBig<R, B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// shortcut for infinities
if self.repr.is_infinite() {
return match self.repr.sign() {
Sign::Positive => f.write_str("inf"),
Sign::Negative => f.write_str("-inf"),
};
}
let rnd_name = core::any::type_name::<R>();
let rnd_name = rnd_name
.rfind("::")
.map(|pos| &rnd_name[pos + 2..])
.unwrap_or(rnd_name);
if f.alternate() {
f.debug_struct("FBig")
.field_significand::<B>(&self.repr.significand)
.field("exponent", &format_args!("{} ^ {}", &B, &self.repr.exponent))
.field("precision", &self.context.precision)
.field("rounding", &format_args!("{}", rnd_name))
.finish()
} else {
f.write_fmt(format_args!("{:?} (prec: {})", &self.repr, &self.context.precision))
}
}
}
impl<R: Round, const B: Word> Display for FBig<R, B> {
#[inline]
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
self.repr.fmt_round::<R>(f)
}
}