1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
use core::{
convert::{TryFrom, TryInto},
num::FpCategory,
};
use dashu_base::{
Approximation::*, BitTest, ConversionError, DivRemEuclid, EstimatedLog2, FloatEncoding, Sign,
Signed,
};
use dashu_int::{IBig, UBig, Word};
use crate::{
error::{assert_finite, panic_unlimited_precision},
fbig::FBig,
repr::{Context, Repr},
round::{
mode::{HalfAway, HalfEven, Zero},
Round, Rounded, Rounding,
},
utils::{ilog_exact, shl_digits, shl_digits_in_place, shr_digits},
};
impl<R: Round> Context<R> {
/// Convert an [IBig] instance to a [FBig] instance with precision
/// and rounding given by the context.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// use dashu_base::Approximation::*;
/// use dashu_float::{Context, round::{mode::HalfAway, Rounding::*}};
///
/// let context = Context::<HalfAway>::new(2);
/// assert_eq!(context.convert_int::<10>((-12).into()), Exact(DBig::from_str_native("-12")?));
/// assert_eq!(
/// context.convert_int::<10>(5678.into()),
/// Inexact(DBig::from_str_native("5.7e3")?, AddOne)
/// );
/// # Ok::<(), ParseError>(())
/// ```
pub fn convert_int<const B: Word>(&self, n: IBig) -> Rounded<FBig<R, B>> {
let repr = Repr::<B>::new(n, 0);
self.repr_round(repr).map(|v| FBig::new(v, *self))
}
}
macro_rules! impl_from_float_for_fbig {
($t:ty) => {
impl<R: Round> TryFrom<$t> for FBig<R, 2> {
type Error = ConversionError;
fn try_from(f: $t) -> Result<Self, Self::Error> {
match f.decode() {
Ok((man, exp)) => {
let repr = Repr::new(man.into(), exp as _);
// The precision is inferenced from the mantissa, because the mantissa of
// normal float is always normalized. This will produce correct precision
// for subnormal floats
let bits = man.unsigned_abs().bit_len();
let context = Context::new(bits);
Ok(Self::new(repr, context))
}
Err(FpCategory::Infinite) => match f.sign() {
Sign::Positive => Ok(FBig::INFINITY),
Sign::Negative => Ok(FBig::NEG_INFINITY),
},
_ => Err(ConversionError::OutOfBounds), // NaN
}
}
}
};
}
impl_from_float_for_fbig!(f32);
impl_from_float_for_fbig!(f64);
impl<R: Round, const B: Word> FBig<R, B> {
/// Convert the float number to base 10 (with decimal exponents) rounding to even
/// and tying away from zero.
///
/// It's equivalent to `self.with_rounding::<HalfAway>().with_base::<10>()`.
/// The output is directly of type [DBig][crate::DBig].
///
/// See [with_base()][Self::with_base] for the precision behavior.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::{FBig, DBig};
/// use dashu_base::Approximation::*;
/// use dashu_float::round::Rounding::*;
///
/// type Real = FBig;
///
/// assert_eq!(
/// Real::from_str_native("0x1234")?.to_decimal(),
/// Exact(DBig::from_str_native("4660")?)
/// );
/// assert_eq!(
/// Real::from_str_native("0x12.34")?.to_decimal(),
/// Inexact(DBig::from_str_native("18.20")?, NoOp)
/// );
/// assert_eq!(
/// Real::from_str_native("0x1.234p-4")?.to_decimal(),
/// Inexact(DBig::from_str_native("0.07111")?, AddOne)
/// );
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Panics
///
/// Panics if the associated context has unlimited precision and the conversion
/// cannot be performed losslessly.
#[inline]
pub fn to_decimal(&self) -> Rounded<FBig<HalfAway, 10>> {
self.clone().with_rounding().with_base::<10>()
}
/// Convert the float number to base 2 (with binary exponents) rounding towards zero.
///
/// It's equivalent to `self.with_rounding::<Zero>().with_base::<2>()`.
///
/// See [with_base()][Self::with_base] for the precision and rounding behavior.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::{FBig, DBig};
/// use dashu_base::Approximation::*;
/// use dashu_float::round::{mode::HalfAway, Rounding::*};
///
/// type Real = FBig;
///
/// assert_eq!(
/// DBig::from_str_native("1234")?.to_binary(),
/// Exact(Real::from_str_native("0x4d2")?)
/// );
/// assert_eq!(
/// DBig::from_str_native("12.34")?.to_binary(),
/// Inexact(Real::from_str_native("0xc.57")?, NoOp)
/// );
/// assert_eq!(
/// DBig::from_str_native("1.234e-1")?.to_binary(),
/// Inexact(Real::from_str_native("0x1.f97p-4")?, NoOp)
/// );
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Panics
///
/// Panics if the associated context has unlimited precision and the conversion
/// cannot be performed losslessly.
#[inline]
pub fn to_binary(&self) -> Rounded<FBig<Zero, 2>> {
self.clone().with_rounding().with_base::<2>()
}
/// Explicitly change the precision of the float number.
///
/// If the given precision is less than the current value in the context,
/// it will be rounded with the rounding mode specified by the generic parameter.
///
/// # Examples
///
/// ```rust
/// # use dashu_base::ParseError;
/// # use dashu_float::{FBig, DBig};
/// use dashu_base::Approximation::*;
/// use dashu_float::round::{mode::HalfAway, Rounding::*};
///
/// let a = DBig::from_str_native("2.345")?;
/// assert_eq!(a.precision(), 4);
/// assert_eq!(
/// a.clone().with_precision(3),
/// Inexact(DBig::from_str_native("2.35")?, AddOne)
/// );
/// assert_eq!(
/// a.clone().with_precision(5),
/// Exact(DBig::from_str_native("2.345")?)
/// );
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn with_precision(self, precision: usize) -> Rounded<Self> {
let new_context = Context::new(precision);
// shrink if necessary
let repr = if self.context.precision > precision {
new_context.repr_round(self.repr)
} else {
Exact(self.repr)
};
repr.map(|v| Self::new(v, new_context))
}
/// Explicitly change the rounding mode of the number.
///
/// This operation doesn't modify the underlying representation, it only changes
/// the rounding mode in the context.
///
/// # Examples
///
/// ```rust
/// # use dashu_base::ParseError;
/// # use dashu_float::{FBig, DBig};
/// use dashu_base::Approximation::*;
/// use dashu_float::round::{mode::{HalfAway, Zero}, Rounding::*};
///
/// type DBigHalfAway = DBig;
/// type DBigZero = FBig::<Zero, 10>;
///
/// let a = DBigHalfAway::from_str_native("2.345")?;
/// let b = DBigZero::from_str_native("2.345")?;
/// assert_eq!(a.with_rounding::<Zero>(), b);
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn with_rounding<NewR: Round>(self) -> FBig<NewR, B> {
FBig {
repr: self.repr,
context: Context::new(self.context.precision),
}
}
/// Explicitly change the base of the float number.
///
/// This function internally calls [with_base_and_precision][Self::with_base_and_precision].
/// The precision of the result number will be calculated in such a way that the new
/// limit of the significand is less than or equal to before. That is, the new precision
/// will be the max integer such that
///
/// `NewB ^ new_precision <= B ^ old_precision`
///
/// If any rounding happens during the conversion, it follows the rounding mode specified
/// by the generic parameter.
///
/// # Examples
///
/// ```rust
/// # use dashu_base::ParseError;
/// # use dashu_float::{FBig, DBig};
/// use dashu_base::Approximation::*;
/// use dashu_float::round::{mode::Zero, Rounding::*};
///
/// type FBin = FBig;
/// type FDec = FBig<Zero, 10>;
/// type FHex = FBig<Zero, 16>;
///
/// let a = FBin::from_str_native("0x1.234")?; // 0x1234 * 2^-12
/// assert_eq!(
/// a.clone().with_base::<10>(),
/// // 1.1376953125 rounded towards zero
/// Inexact(FDec::from_str_native("1.137")?, NoOp)
/// );
/// assert_eq!(
/// a.clone().with_base::<16>(),
/// // conversion is exact when the new base is a power of the old base
/// Exact(FHex::from_str_native("1.234")?)
/// );
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Panics
///
/// Panics if the associated context has unlimited precision and the conversion
/// cannot be performed losslessly.
#[inline]
#[allow(non_upper_case_globals)]
pub fn with_base<const NewB: Word>(self) -> Rounded<FBig<R, NewB>> {
// if self.context.precision is zero, then precision is also zero
let precision =
Repr::<B>::BASE.pow(self.context.precision).log2_bounds().0 / NewB.log2_bounds().1;
self.with_base_and_precision(precision as usize)
}
/// Explicitly change the base of the float number with given precision (under the new base).
///
/// Infinities are mapped to infinities inexactly, the error will be [NoOp][Rounding::NoOp].
///
/// Conversion for float numbers with unlimited precision is only allowed in following cases:
/// - The number is infinite
/// - The new base NewB is a power of B
/// - B is a power of the new base NewB
///
/// # Examples
///
/// ```rust
/// # use dashu_base::ParseError;
/// # use dashu_float::{FBig, DBig};
/// use dashu_base::Approximation::*;
/// use dashu_float::round::{mode::Zero, Rounding::*};
///
/// type FBin = FBig;
/// type FDec = FBig<Zero, 10>;
/// type FHex = FBig<Zero, 16>;
///
/// let a = FBin::from_str_native("0x1.234")?; // 0x1234 * 2^-12
/// assert_eq!(
/// a.clone().with_base_and_precision::<10>(8),
/// // 1.1376953125 rounded towards zero
/// Inexact(FDec::from_str_native("1.1376953")?, NoOp)
/// );
/// assert_eq!(
/// a.clone().with_base_and_precision::<16>(8),
/// // conversion can be exact when the new base is a power of the old base
/// Exact(FHex::from_str_native("1.234")?)
/// );
/// assert_eq!(
/// a.clone().with_base_and_precision::<16>(2),
/// // but the conversion is still inexact if the target precision is smaller
/// Inexact(FHex::from_str_native("1.2")?, NoOp)
/// );
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Panics
///
/// Panics if the associated context has unlimited precision and the conversion
/// cannot be performed losslessly.
#[allow(non_upper_case_globals)]
#[inline]
pub fn with_base_and_precision<const NewB: Word>(
self,
precision: usize,
) -> Rounded<FBig<R, NewB>> {
let context = Context::<R>::new(precision);
context
.convert_base(self.repr)
.map(|repr| FBig::new(repr, context))
}
/// Convert the float number to integer with the given rounding mode.
///
/// # Warning
///
/// If the float number has a very large exponent, it will be evaluated and result
/// in allocating an huge integer and it might eat up all your memory.
///
/// To get a rough idea of how big the number is, it's recommended to use [EstimatedLog2].
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::{FBig, DBig};
/// use dashu_base::Approximation::*;
/// use dashu_float::round::Rounding::*;
///
/// assert_eq!(
/// DBig::from_str_native("1234")?.to_int(),
/// Exact(1234.into())
/// );
/// assert_eq!(
/// DBig::from_str_native("1.234e6")?.to_int(),
/// Exact(1234000.into())
/// );
/// assert_eq!(
/// DBig::from_str_native("1.234")?.to_int(),
/// Inexact(1.into(), NoOp)
/// );
/// # Ok::<(), ParseError>(())
/// ```
///
/// # Panics
///
/// Panics if the number is infinte
pub fn to_int(&self) -> Rounded<IBig> {
assert_finite(&self.repr);
// shortcut when the number is already an integer
if self.repr.exponent >= 0 {
return Exact(shl_digits::<B>(&self.repr.significand, self.repr.exponent as usize));
}
let (hi, lo, precision) = self.split_at_point_internal();
let adjust = R::round_fract::<B>(&hi, lo, precision);
Inexact(hi + adjust, adjust)
}
/// Convert the float number to [f32] with the rounding mode associated with the type.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// assert_eq!(DBig::from_str_native("1.234")?.to_f32().value(), 1.234);
/// assert_eq!(DBig::INFINITY.to_f32().value(), f32::INFINITY);
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn to_f32(&self) -> Rounded<f32> {
if self.repr.is_infinite() {
return Inexact(self.sign() * f32::INFINITY, Rounding::NoOp);
}
let context = Context::<R>::new(24);
if B != 2 {
let rounded: Rounded<Repr<2>> = context.convert_base(self.repr.clone());
rounded.and_then(|v| v.into_f32_internal())
} else {
context
.repr_round_ref(&self.repr)
.and_then(|v| v.into_f32_internal())
}
}
/// Convert the float number to [f64] with [HalfEven] rounding mode regardless of the mode associated with this number.
///
/// # Examples
///
/// ```
/// # use dashu_base::ParseError;
/// # use dashu_float::DBig;
/// assert_eq!(DBig::from_str_native("1.234")?.to_f64().value(), 1.234);
/// assert_eq!(DBig::INFINITY.to_f64().value(), f64::INFINITY);
/// # Ok::<(), ParseError>(())
/// ```
#[inline]
pub fn to_f64(&self) -> Rounded<f64> {
if self.repr.is_infinite() {
return Inexact(self.sign() * f64::INFINITY, Rounding::NoOp);
}
let context = Context::<HalfEven>::new(53);
if B != 2 {
let rounded: Rounded<Repr<2>> = context.convert_base(self.repr.clone());
rounded.and_then(|v| v.into_f64_internal())
} else {
context
.repr_round_ref(&self.repr)
.and_then(|v| v.into_f64_internal())
}
}
}
impl<R: Round> Context<R> {
// Convert the [Repr] from base B to base NewB, with the precision under the target base from this context.
#[allow(non_upper_case_globals)]
fn convert_base<const B: Word, const NewB: Word>(&self, repr: Repr<B>) -> Rounded<Repr<NewB>> {
// shortcut if NewB is the same as B
if NewB == B {
return Exact(Repr {
significand: repr.significand,
exponent: repr.exponent,
});
}
// shortcut for infinities, no rounding happens but the result is inexact
if repr.is_infinite() {
return Inexact(
Repr {
significand: repr.significand,
exponent: repr.exponent,
},
Rounding::NoOp,
);
}
if NewB > B {
// shortcut if NewB is a power of B
let n = ilog_exact(NewB, B);
if n > 1 {
let (exp, rem) = repr.exponent.div_rem_euclid(n as isize);
let signif = repr.significand * B.pow(rem as u32);
let repr = Repr::new(signif, exp);
return self.repr_round(repr);
}
} else {
// shortcut if B is a power of NewB
let n = ilog_exact(B, NewB);
if n > 1 {
let exp = repr.exponent * n as isize;
return Exact(Repr::new(repr.significand, exp));
}
}
// if the base cannot be converted losslessly, the precision must be set
if self.precision == 0 {
panic_unlimited_precision();
}
// XXX: there's a potential optimization: if B is a multiple of NewB, then the factor B
// should be trivially removed first, but this requires full support of const generics.
// choose a exponent threshold such that number with exponent smaller than this value
// will be converted by directly evaluating the power. The threshold here is chosen such
// that the power under base 10 will fit in a double word.
const THRESHOLD_SMALL_EXP: isize = (Word::BITS as f32 * 0.60206) as isize; // word bits * 2 / log2(10)
if repr.exponent.abs() <= THRESHOLD_SMALL_EXP {
// if the exponent is small enough, directly evaluate the exponent
if repr.exponent >= 0 {
let signif = repr.significand * Repr::<B>::BASE.pow(repr.exponent as usize);
Exact(Repr::new(signif, 0))
} else {
let num = Repr::new(repr.significand, 0);
let den = Repr::new(Repr::<B>::BASE.pow(-repr.exponent as usize).into(), 0);
self.repr_div(num, den)
}
} else {
// if the exponent is large, then we first estimate the result exponent as floor(exponent * log(B) / log(NewB)),
// then the fractional part is multiplied with the original significand
let work_context = Context::<R>::new(2 * self.precision); // double the precision to get the precise logarithm
let new_exp = repr.exponent
* work_context
.ln(&Repr::new(Repr::<B>::BASE.into(), 0))
.value();
let (exponent, rem) = new_exp.div_rem_euclid(work_context.ln_base::<NewB>());
let exponent: isize = exponent.try_into().unwrap();
let exp_rem = rem.exp();
let significand = repr.significand * exp_rem.repr.significand;
let repr = Repr::new(significand, exponent + exp_rem.repr.exponent);
self.repr_round(repr)
}
}
}
impl<const B: Word> Repr<B> {
// this method requires that the representation is already rounded to 24 binary bits
fn into_f32_internal(self) -> Rounded<f32> {
assert!(B == 2);
debug_assert!(self.is_finite());
debug_assert!(self.significand.bit_len() <= 24);
let sign = self.sign();
let man24: i32 = self.significand.try_into().unwrap();
if self.exponent >= 128 {
// max f32 = 2^128 * (1 - 2^-24)
match sign {
Sign::Positive => Inexact(f32::INFINITY, Rounding::AddOne),
Sign::Negative => Inexact(f32::NEG_INFINITY, Rounding::SubOne),
}
} else if self.exponent < -149 - 24 {
// min f32 = 2^-149
Inexact(sign * 0f32, Rounding::NoOp)
} else {
match f32::encode(man24, self.exponent as i16) {
Exact(v) => Exact(v),
// this branch only happens when the result underflows
Inexact(v, _) => Inexact(v, Rounding::NoOp),
}
}
}
/// Convert the float number representation to a [f32] with the default IEEE 754 rounding mode.
///
/// The default IEEE 754 rounding mode is [HalfEven] (rounding to nearest, ties to even). To convert
/// the float number with a specific rounding mode, please use [FBig::to_f32].
///
/// # Examples
///
/// ```
/// # use dashu_base::Approximation::*;
/// # use dashu_float::{Repr, round::Rounding::*};
/// assert_eq!(Repr::<2>::one().to_f32(), Exact(1.0));
/// assert_eq!(Repr::<10>::infinity().to_f32(), Inexact(f32::INFINITY, NoOp));
/// ```
#[inline]
pub fn to_f32(&self) -> Rounded<f32> {
// Note: the implementation here should be kept consistent with FBig::to_f32
if self.is_infinite() {
return Inexact(self.sign() * f32::INFINITY, Rounding::NoOp);
}
let context = Context::<HalfEven>::new(24);
if B != 2 {
let rounded: Rounded<Repr<2>> = context.convert_base(self.clone());
rounded.and_then(|v| v.into_f32_internal())
} else {
context
.repr_round_ref(self)
.and_then(|v| v.into_f32_internal())
}
}
// this method requires that the representation is already rounded to 53 binary bits
fn into_f64_internal(self) -> Rounded<f64> {
assert!(B == 2);
debug_assert!(self.is_finite());
debug_assert!(self.significand.bit_len() <= 53);
let sign = self.sign();
let man53: i64 = self.significand.try_into().unwrap();
if self.exponent >= 1024 {
// max f64 = 2^1024 × (1 − 2^−53)
match sign {
Sign::Positive => Inexact(f64::INFINITY, Rounding::AddOne),
Sign::Negative => Inexact(f64::NEG_INFINITY, Rounding::SubOne),
}
} else if self.exponent < -1074 - 53 {
// min f64 = 2^-1074
Inexact(sign * 0f64, Rounding::NoOp)
} else {
match f64::encode(man53, self.exponent as i16) {
Exact(v) => Exact(v),
// this branch only happens when the result underflows
Inexact(v, _) => Inexact(v, Rounding::NoOp),
}
}
}
/// Convert the float number representation to a [f64] with the default IEEE 754 rounding mode.
///
/// The default IEEE 754 rounding mode is [HalfEven] (rounding to nearest, ties to even). To convert
/// the float number with a specific rounding mode, please use [FBig::to_f64].
///
/// # Examples
///
/// ```
/// # use dashu_base::Approximation::*;
/// # use dashu_float::{Repr, round::Rounding::*};
/// assert_eq!(Repr::<2>::one().to_f64(), Exact(1.0));
/// assert_eq!(Repr::<10>::infinity().to_f64(), Inexact(f64::INFINITY, NoOp));
/// ```
#[inline]
pub fn to_f64(&self) -> Rounded<f64> {
// Note: the implementation here should be kept consistent with FBig::to_f64
if self.is_infinite() {
return Inexact(self.sign() * f64::INFINITY, Rounding::NoOp);
}
let context = Context::<HalfEven>::new(53);
if B != 2 {
let rounded: Rounded<Repr<2>> = context.convert_base(self.clone());
rounded.and_then(|v| v.into_f64_internal())
} else {
context
.repr_round_ref(self)
.and_then(|v| v.into_f64_internal())
}
}
/// Convert the float number representation to a [IBig].
///
/// The fractional part is always rounded to zero. To convert with other rounding modes,
/// please use [FBig::to_int()].
///
/// # Warning
///
/// If the float number has a very large exponent, it will be evaluated and result
/// in allocating an huge integer and it might eat up all your memory.
///
/// To get a rough idea of how big the number is, it's recommended to use [EstimatedLog2].
///
/// # Examples
///
/// ```
/// # use dashu_base::Approximation::*;
/// # use dashu_int::IBig;
/// # use dashu_float::{Repr, round::Rounding::*};
/// assert_eq!(Repr::<2>::neg_one().to_int(), Exact(IBig::NEG_ONE));
/// ```
///
/// # Panics
///
/// Panics if the number is infinte.
pub fn to_int(&self) -> Rounded<IBig> {
assert_finite(self);
if self.exponent >= 0 {
// the number is already an integer
Exact(shl_digits::<B>(&self.significand, self.exponent as usize))
} else if self.smaller_than_one() {
// the number is definitely smaller than
Inexact(IBig::ZERO, Rounding::NoOp)
} else {
let int = shr_digits::<B>(&self.significand, (-self.exponent) as usize);
Inexact(int, Rounding::NoOp)
}
}
}
impl<R: Round, const B: Word> From<IBig> for FBig<R, B> {
#[inline]
fn from(n: IBig) -> Self {
Self::from_parts(n, 0)
}
}
impl<R: Round, const B: Word> From<UBig> for FBig<R, B> {
#[inline]
fn from(n: UBig) -> Self {
IBig::from(n).into()
}
}
impl<R: Round, const B: Word> TryFrom<FBig<R, B>> for IBig {
type Error = ConversionError;
#[inline]
fn try_from(value: FBig<R, B>) -> Result<Self, Self::Error> {
if value.repr.is_infinite() {
Err(ConversionError::OutOfBounds)
} else if value.repr.exponent < 0 {
Err(ConversionError::LossOfPrecision)
} else {
let mut int = value.repr.significand;
shl_digits_in_place::<B>(&mut int, value.repr.exponent as usize);
Ok(int)
}
}
}
impl<R: Round, const B: Word> TryFrom<FBig<R, B>> for UBig {
type Error = ConversionError;
#[inline]
fn try_from(value: FBig<R, B>) -> Result<Self, Self::Error> {
let int: IBig = value.try_into()?;
int.try_into()
}
}
macro_rules! fbig_unsigned_conversions {
($($t:ty)*) => {$(
impl<R: Round, const B: Word> From<$t> for FBig<R, B> {
#[inline]
fn from(value: $t) -> FBig<R, B> {
UBig::from(value).into()
}
}
)*};
}
fbig_unsigned_conversions!(u8 u16 u32 u64 u128 usize);
macro_rules! fbig_signed_conversions {
($($t:ty)*) => {$(
impl<R: Round, const B: Word> From<$t> for FBig<R, B> {
#[inline]
fn from(value: $t) -> FBig<R, B> {
IBig::from(value).into()
}
}
)*};
}
fbig_signed_conversions!(i8 i16 i32 i64 i128 isize);