1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
use dashu_base::{Approximation, Sign, SquareRootRem, UnsignedAbs};
use dashu_int::IBig;
use crate::{
error::{assert_finite, assert_limited_precision, panic_root_negative},
fbig::FBig,
repr::{Context, Repr, Word},
round::{Round, Rounded},
utils::{shl_digits, split_digits_ref},
};
impl<R: Round, const B: Word> FBig<R, B> {
#[inline]
pub fn sqrt(&self) -> Self {
self.context.sqrt(self.repr()).value()
}
}
impl<R: Round> Context<R> {
pub fn sqrt<const B: Word>(&self, x: &Repr<B>) -> Rounded<FBig<R, B>> {
assert_finite(x);
assert_limited_precision(self.precision);
if x.sign() == Sign::Negative {
panic_root_negative()
}
let digits = x.digits() as isize;
let shift = self.precision as isize * 2 - (digits & 1) + (x.exponent & 1) - digits;
let (signif, low, low_digits) = if shift > 0 {
(shl_digits::<B>(&x.significand, shift as usize), IBig::ZERO, 0)
} else {
let shift = (-shift) as usize;
let (hi, lo) = split_digits_ref::<B>(&x.significand, shift);
(hi, lo, shift)
};
let (root, rem) = signif.unsigned_abs().sqrt_rem();
let root = Sign::Positive * root;
let exp = (x.exponent - shift) / 2;
let res = if rem.is_zero() {
Approximation::Exact(root)
} else {
let adjust = R::round_low_part(&root, Sign::Positive, || {
(Sign::Positive * rem)
.cmp(&root)
.then_with(|| (low * 4u8).cmp(&Repr::<B>::BASE.pow(low_digits)))
});
Approximation::Inexact(root + adjust, adjust)
};
res.map(|signif| Repr::new(signif, exp))
.and_then(|v| self.repr_round(v))
.map(|v| FBig::new(v, *self))
}
}