1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
use super::{CubicRootRem, SquareRootRem};
use crate::DivRem;
pub(crate) trait NormalizedRootRem: Sized {
type OutputRoot;
/// Square root with the normalized input such that highest or second
/// highest bit are set. For internal use only.
fn normalized_sqrt_rem(self) -> (Self::OutputRoot, Self);
/// Cubic root with the normalized input such that at least one of the
/// highest three bits are set. For internal use only.
fn normalized_cbrt_rem(self) -> (Self::OutputRoot, Self);
}
// Estimations of normalized 1/sqrt(x) with 9 bits precision. Specifically
// (rsqrt_tab[i] + 0x100) / 0x200 ≈ (sqrt(32) / sqrt(32 + i))
const RSQRT_TAB: [u8; 96] = [
0xfc, 0xf4, 0xed, 0xe6, 0xdf, 0xd9, 0xd3, 0xcd, 0xc7, 0xc2, 0xbc, 0xb7, 0xb2, 0xad, 0xa9, 0xa4,
0xa0, 0x9c, 0x98, 0x94, 0x90, 0x8c, 0x88, 0x85, 0x81, 0x7e, 0x7b, 0x77, 0x74, 0x71, 0x6e, 0x6b,
0x69, 0x66, 0x63, 0x61, 0x5e, 0x5b, 0x59, 0x57, 0x54, 0x52, 0x50, 0x4d, 0x4b, 0x49, 0x47, 0x45,
0x43, 0x41, 0x3f, 0x3d, 0x3b, 0x39, 0x37, 0x36, 0x34, 0x32, 0x30, 0x2f, 0x2d, 0x2c, 0x2a, 0x28,
0x27, 0x25, 0x24, 0x22, 0x21, 0x1f, 0x1e, 0x1d, 0x1b, 0x1a, 0x19, 0x17, 0x16, 0x15, 0x14, 0x12,
0x11, 0x10, 0x0f, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
];
// Estimations of normalized 1/cbrt(x) with 9 bits precision. Specifically
// (rcbrt_tab[i] + 0x100) / 0x200 ≈ (cbrt(8) / cbrt(8 + i))
const RCBRT_TAB: [u8; 56] = [
0xf6, 0xe4, 0xd4, 0xc6, 0xb9, 0xae, 0xa4, 0x9b, 0x92, 0x8a, 0x83, 0x7c, 0x76, 0x70, 0x6b, 0x66,
0x61, 0x5c, 0x57, 0x53, 0x4f, 0x4b, 0x48, 0x44, 0x41, 0x3e, 0x3b, 0x38, 0x35, 0x32, 0x2f, 0x2d,
0x2a, 0x28, 0x25, 0x23, 0x21, 0x1f, 0x1d, 0x1b, 0x19, 0x17, 0x15, 0x13, 0x11, 0x10, 0x0e, 0x0c,
0x0b, 0x09, 0x08, 0x06, 0x05, 0x03, 0x02, 0x01,
];
/// Fix the estimation error of `sqrt(n)`, `s` is the (mutable) estimation variable,
/// This procedure requires s <= `sqrt(n)`, returns the error `n - s^2`.
macro_rules! fix_sqrt_error {
($t:ty, $n:ident, $s:ident) => {{
let mut e = $n - ($s as $t).pow(2);
let mut elim = 2 * $s as $t + 1;
while e >= elim {
$s += 1;
e -= elim;
elim += 2;
}
e
}};
}
/// Fix the estimation error of `cbrt(n)`, `c` is the (mutable) estimation variable,
/// This procedure requires c <= `cbrt(n)`, returns the error `n - c^3`.
macro_rules! fix_cbrt_error {
($t:ty, $n:ident, $c:ident) => {{
let cc = ($c as $t).pow(2);
let mut e = $n - cc * ($c as $t);
let mut elim = 3 * (cc + $c as $t) + 1;
while e >= elim {
$c += 1;
e -= elim;
elim += 6 * ($c as $t);
}
e
}};
}
impl NormalizedRootRem for u16 {
type OutputRoot = u8;
fn normalized_sqrt_rem(self) -> (u8, u16) {
debug_assert!(self.leading_zeros() <= 1);
// retrieved r ≈ √32 / √(n >> 9) * 0x200 = 1 / √(n >> 14) * 2^9 = 2^16 / √n.
let r = 0x100 | RSQRT_TAB[(self >> 9) as usize - 32] as u32; // 9 bits
let s = (r * self as u32) >> 16;
let mut s = (s - 1) as u8; // to make sure s is an underestimate
// then fix the estimation error
let e = fix_sqrt_error!(u16, self, s);
(s, e)
}
fn normalized_cbrt_rem(self) -> (u8, u16) {
debug_assert!(self.leading_zeros() <= 2);
// retrieved r ≈ ∛8 / ∛(n >> 9) * 0x200 = 1 / ∛(n >> 12) * 2^9 = 2^13 / ∛n.
let adjust = self.leading_zeros() == 0;
let r = 0x100 | RCBRT_TAB[(self >> (9 + (3 * adjust as u8))) as usize - 8] as u32; // 9 bits
let r2 = (r * r) >> (2 + 2 * adjust as u8);
let c = (r2 * self as u32) >> 24;
let mut c = (c - 1) as u8; // to make sure c is an underestimate
// step6: fix the estimation error, at most 2 steps are needed
// if we use more bits to estimate the initial guess, less steps can be required
let e = fix_cbrt_error!(u16, self, c);
(c, e)
}
}
/// Get the high part of widening mul on two u16 integers
#[inline]
fn wmul16_hi(a: u16, b: u16) -> u16 {
(((a as u32) * (b as u32)) >> 16) as u16
}
impl NormalizedRootRem for u32 {
type OutputRoot = u16;
fn normalized_sqrt_rem(self) -> (u16, u32) {
// Use newton's method on 1/sqrt(n)
// x_{i+1} = x_i * (3 - n*x_i^2) / 2
debug_assert!(self.leading_zeros() <= 1);
// step1: lookup initial estimation of normalized 1/√n. The lookup table uses the highest 7 bits,
// since the input is normalized, the lookup index must be larger than 2**(7-2) = 32.
// then the retrieved r ≈ √32 / √(n >> 25) * 0x200 = 1 / √(n >> 30) / 2^9 = 2^24 / √n.
let n16 = (self >> 16) as u16;
let r = 0x100 | RSQRT_TAB[(n16 >> 9) as usize - 32] as u32; // 9 bits
// step2: first Newton iteration (without dividing by 2)
// r will be an estimation of 2^(24+6) / √n with 16 bits effective precision
let r = ((3 * r as u16) << 5) - (wmul32_hi(self, r * r * r) >> 11) as u16; // 15 bits
// step3: √n = x * 1/√n
let r = r << 1; // normalize to 16 bits, now r estimates 2^31 / √n
let mut s = wmul16_hi(r, n16).saturating_mul(2); // overflowing can happen
s -= 4; // to make sure s is an underestimate
// step4: second Newton iteration on √n
let e = self - (s as u32) * (s as u32);
s += wmul16_hi((e >> 16) as u16, r);
// step5: fix the estimation error, at most 2 steps are needed
// if we use more bits to estimate the initial guess, less steps can be required
let e = fix_sqrt_error!(u32, self, s);
(s, e)
}
fn normalized_cbrt_rem(self) -> (u16, u32) {
// Use newton's method on 1/cbrt(n)
// x_{i+1} = x_i * (4 - n*x_i^3) / 3
debug_assert!(self.leading_zeros() <= 2);
// step1: lookup initial estimation of 1/∛x. The lookup table uses the highest 6 bits up to 30rd.
// if the input is 32/31 bit, then shift it to 29/28 bit.
// retrieved r ≈ ∛8 / ∛(n >> 24) * 0x200 = 1 / ∛(n >> 27) * 2^9 = 2^18 / ∛n.
let adjust = self.leading_zeros() < 2;
let n16 = (self >> (16 + 3 * adjust as u8)) as u16;
let r = 0x100 | RCBRT_TAB[(n16 >> 8) as usize - 8] as u32; // 9 bits
// step2: first Newton iteration
// required shift = 18 * 3 - 11 - 16 * 2 - * 2 = 11
// afterwards, r ≈ 2^(18+11-4) / ∛n
let r3 = (r * r * r) >> 11;
let t = (4 << 11) - wmul16_hi(n16, r3 as u16); // 13 bits
let mut r = ((r * t as u32 / 3) >> 4) as u16; // 16 bits
r >>= adjust as u8; // recover the adjustment if needed
// step5: ∛x = x * (1/∛x)^2
let r = r - 10; // to make sure c is an underestimate
let mut c = wmul16_hi(r, wmul16_hi(r, (self >> 16) as u16)) >> 2;
// step6: fix the estimation error, at most 2 steps are needed
// if we use more bits to estimate the initial guess, less steps can be required
let e = fix_cbrt_error!(u32, self, c);
(c, e)
}
}
/// Get the high part of widening mul on two u32 integers
#[inline]
fn wmul32_hi(a: u32, b: u32) -> u32 {
(((a as u64) * (b as u64)) >> 32) as u32
}
impl NormalizedRootRem for u64 {
type OutputRoot = u32;
fn normalized_sqrt_rem(self) -> (u32, u64) {
// Use newton's method on 1/sqrt(n)
// x_{i+1} = x_i * (3 - n*x_i^2) / 2
debug_assert!(self.leading_zeros() <= 1);
// step1: lookup initial estimation of normalized 1/√n. The lookup table uses the highest 7 bits,
// since the input is normalized, the lookup index must be larger than 2**(7-2) = 32.
// then the retrieved r ≈ √32 / √(n >> 57) * 0x200 = 1 / √(n >> 62) / 2^9 = 2^40 / √n.
let n32 = (self >> 32) as u32;
let r = 0x100 | RSQRT_TAB[(n32 >> 25) as usize - 32] as u32; // 9 bits
// step2: first Newton iteration (without dividing by 2)
// afterwards, r ≈ 2^(40+22) / √n with 16 bits effective precision
let r = ((3 * r) << 21) - wmul32_hi(n32, (r * r * r) << 5); // 31 bits
// step3: second Newton iteration (without dividing by 2)
// afterwards, r ≈ 2^(40+19) / √n with 32 bits effective precision
let t = (3 << 28) - wmul32_hi(r, wmul32_hi(r, n32)); // 29 bits
let r = wmul32_hi(r, t); // 28 bits
// step4: √n = x * 1/√n
let r = r << 4; // normalize to 32 bits, now r estimates 2^63 / √n
let mut s = wmul32_hi(r, n32) << 1;
s -= 10; // to make sure s is an underestimate
// step5: third Newton iteration on √n
let e = self - (s as u64) * (s as u64);
s += wmul32_hi((e >> 32) as u32, r);
// step6: fix the estimation error, at most 2 steps are needed
// if we use more bits to estimate the initial guess, less steps can be required
let e = fix_sqrt_error!(u64, self, s);
(s, e)
}
fn normalized_cbrt_rem(self) -> (u32, u64) {
// Use newton's method on 1/cbrt(n)
// x_{i+1} = x_i * (4 - n*x_i^3) / 3
debug_assert!(self.leading_zeros() <= 2);
// step1: lookup initial estimation of 1/∛x. The lookup table uses the highest 6 bits up to 63rd.
// if the input has 64 bits, then shift it to 61 bits.
// retrieved r ≈ ∛8 / ∛(n >> 57) * 0x200 = 1 / ∛(n >> 60) * 2^9 = 2^29 / ∛n.
let adjust = self.leading_zeros() == 0;
let n32 = (self >> (32 + 3 * adjust as u8)) as u32;
let r = 0x100 | RCBRT_TAB[(n32 >> 25) as usize - 8] as u32; // 9 bits
// step2: first Newton iteration
// required shift = 29 * 3 - 32 * 2 = 23
// afterwards, r ≈ 2^(29+23) / ∛n = 2^52 / ∛n
let t = (4 << 23) - wmul32_hi(n32, r * r * r);
let r = r * (t / 3); // 32 bits
// step3: second Newton iteration
// required shift = 52 * 3 - 32 * 4 = 28
// afterwards, r ≈ 2^(52+28-32) / ∛n = 2^48 / ∛n
let t = (4 << 28) - wmul32_hi(r, wmul32_hi(r, wmul32_hi(r, n32)));
let mut r = wmul32_hi(r, t) / 3; // 28 bits
r >>= adjust as u8; // recover the adjustment if needed
// step4: ∛x = x * (1/∛x)^2 = x * (2^48/∛x)^2 / 2^(32*3)
let r = r - 1; // to make sure c is an underestimate
let mut c = wmul32_hi(r, wmul32_hi(r, (self >> 32) as u32));
// step5: fix the estimation error, at most 3 steps are needed
// if we use more bits to estimate the initial guess, less steps can be required
let e = fix_cbrt_error!(u64, self, c);
(c, e)
}
}
impl NormalizedRootRem for u128 {
type OutputRoot = u64;
fn normalized_sqrt_rem(self) -> (u64, u128) {
debug_assert!(self.leading_zeros() <= 1);
// use the "Karatsuba Square Root" algorithm
// (see the implementation in dashu_int, or https://hal.inria.fr/inria-00072854/en/)
// step1: calculate sqrt on high parts
let (a, b) = (self >> u64::BITS, self & u64::MAX as u128);
let (a, b) = (a as u64, b as u64);
let (s1, r1) = a.normalized_sqrt_rem();
// step2: estimate the result with low parts
// note that r1 <= 2*s1 < 2^(KBITS + 1)
// here r0 = (r1*B + b) / 2
const KBITS: u32 = u64::BITS / 2;
let r0 = r1 << (KBITS - 1) | b >> (KBITS + 1);
let (mut q, mut u) = r0.div_rem(s1 as u64);
if q >> KBITS > 0 {
// if q >= B (then q = B), reduce the overestimate
q -= 1;
u += s1 as u64;
}
let mut s = (s1 as u64) << KBITS | q;
let r = (u << (KBITS + 1)) | (b & ((1 << (KBITS + 1)) - 1));
let q2 = q * q;
let mut c = (u >> (KBITS - 1)) as i8 - (r < q2) as i8;
let mut r = r.wrapping_sub(q2);
// step3: fix the estimation error if necessary
if c < 0 {
let (new_r, c1) = r.overflowing_add(s);
s -= 1;
let (new_r, c2) = new_r.overflowing_add(s);
r = new_r;
c += c1 as i8 + c2 as i8;
}
(s, (c as u128) << u64::BITS | r as u128)
}
fn normalized_cbrt_rem(self) -> (u64, u128) {
debug_assert!(self.leading_zeros() <= 2);
/*
* the following algorithm is similar to the "Karatsuba Square Root" above:
* assume n = a*B^3 + b2*B^2 + b1*B + b0, B=2^k, a has roughly 3k bits
* 1. calculate cbrt on high part:
* c1, r1 = cbrt_rem(a)
* 2. estimate the root with low part
* q, u = div_rem(r1*B + b2, 3*c1^2)
* c = c1*B + q
* r = u*B^2 + b1*B + b0 - 3*c1*q^2*B - q^3
*
* 3. if a5 is normalized, then only few adjustments are needed
* while r < 0 {
* r += 3*c^2 - 3*c + 1
* c -= 1
* }
*/
// step1: calculate cbrt on high 62 bits
let (c1, r1) = if self.leading_zeros() > 0 {
// actually on high 65 bits
let a = (self >> 63) as u64;
let (mut c, _) = a.normalized_cbrt_rem();
c >>= 1;
(c, (a >> 3) - (c as u64).pow(3))
} else {
let a = (self >> 66) as u64;
a.normalized_cbrt_rem()
};
// step2: estimate the root with low part
const KBITS: u32 = 22;
let r0 = ((r1 as u128) << KBITS) | (self >> (2 * KBITS) & ((1 << KBITS) - 1));
let (q, u) = r0.div_rem(3 * (c1 as u128).pow(2));
let mut c = ((c1 as u64) << KBITS) + (q as u64); // here q might be larger than B
// r = u*B^2 + b1*B + b0 - 3*c1*q^2*B - q^3
let t1 = (u << (2 * KBITS)) | (self & ((1 << (2 * KBITS)) - 1));
let t2 = (((3 * (c1 as u128)) << KBITS) + q) * q.pow(2);
let mut r = t1 as i128 - t2 as i128;
// step3: adjustment, finishes in at most 4 steps
while r < 0 {
r += 3 * (c as i128 - 1) * c as i128 + 1;
c -= 1;
}
(c, r as u128)
}
}
// The implementation for u8 is very naive, because it's rarely used
impl SquareRootRem for u8 {
type Output = u8;
#[inline]
fn sqrt_rem(&self) -> (u8, u8) {
// brute-force search, because there are only 16 possibilites.
let mut s = 0;
let e = fix_sqrt_error!(u8, self, s);
(s, e)
}
}
impl CubicRootRem for u8 {
type Output = u8;
#[inline]
fn cbrt_rem(&self) -> (u8, u8) {
// brute-force search, because there are only 7 possibilites.
let mut c = 0;
let e = fix_cbrt_error!(u8, self, c);
(c, e)
}
}
macro_rules! impl_rootrem_using_normalized {
($t:ty, $half:ty) => {
impl SquareRootRem for $t {
type Output = $half;
fn sqrt_rem(&self) -> ($half, $t) {
if *self == 0 {
return (0, 0);
}
// normalize the input and call the normalized subroutine
let shift = self.leading_zeros() & !1; // make sure shift is divisible by 2
let (mut root, mut rem) = (self << shift).normalized_sqrt_rem();
if shift != 0 {
root >>= shift / 2;
rem = self - (root as $t).pow(2);
}
(root, rem)
}
}
impl CubicRootRem for $t {
type Output = $half;
fn cbrt_rem(&self) -> ($half, $t) {
if *self == 0 {
return (0, 0);
}
// normalize the input and call the normalized subroutine
let mut shift = self.leading_zeros();
shift -= shift % 3; // make sure shift is divisible by 3
let (mut root, mut rem) = (self << shift).normalized_cbrt_rem();
if shift != 0 {
root >>= shift / 3;
rem = self - (root as $t).pow(3);
}
(root, rem)
}
}
};
}
impl_rootrem_using_normalized!(u16, u8);
impl_rootrem_using_normalized!(u32, u16);
impl_rootrem_using_normalized!(u64, u32);
impl_rootrem_using_normalized!(u128, u64);
#[cfg(test)]
mod tests {
use super::*;
use crate::math::{CubicRoot, SquareRoot};
use rand::random;
#[test]
fn test_sqrt() {
assert_eq!(2u8.sqrt_rem(), (1, 1));
assert_eq!(2u16.sqrt_rem(), (1, 1));
assert_eq!(2u32.sqrt_rem(), (1, 1));
assert_eq!(2u64.sqrt_rem(), (1, 1));
assert_eq!(2u128.sqrt_rem(), (1, 1));
assert_eq!(u8::MAX.sqrt_rem(), (15, 30));
assert_eq!(u16::MAX.sqrt_rem(), (u8::MAX, (u8::MAX as u16) * 2));
assert_eq!(u32::MAX.sqrt_rem(), (u16::MAX, (u16::MAX as u32) * 2));
assert_eq!(u64::MAX.sqrt_rem(), (u32::MAX, (u32::MAX as u64) * 2));
assert_eq!(u128::MAX.sqrt_rem(), (u64::MAX, (u64::MAX as u128) * 2));
assert_eq!((u8::MAX / 2).sqrt_rem(), (11, 6));
assert_eq!((u16::MAX / 2).sqrt_rem(), (181, 6));
assert_eq!((u32::MAX / 2).sqrt_rem(), (46340, 88047));
assert_eq!((u64::MAX / 2).sqrt_rem(), (3037000499, 5928526806));
assert_eq!((u128::MAX / 2).sqrt_rem(), (13043817825332782212, 9119501915260492783));
// some cases from previous bugs
assert_eq!(65533u32.sqrt_rem(), (255, 508));
macro_rules! random_case {
($T:ty) => {
let n: $T = random();
let (root, rem) = n.sqrt_rem();
assert_eq!(root, n.sqrt());
assert!(rem <= (root as $T) * 2, "sqrt({}) remainder too large", n);
assert_eq!(n, (root as $T).pow(2) + rem, "sqrt({}) != {}, {}", n, root, rem);
};
}
const N: u32 = 10000;
for _ in 0..N {
random_case!(u8);
random_case!(u16);
random_case!(u32);
random_case!(u64);
random_case!(u128);
}
}
#[test]
fn test_cbrt() {
assert_eq!(2u8.cbrt_rem(), (1, 1));
assert_eq!(2u16.cbrt_rem(), (1, 1));
assert_eq!(2u32.cbrt_rem(), (1, 1));
assert_eq!(2u64.cbrt_rem(), (1, 1));
assert_eq!(2u128.cbrt_rem(), (1, 1));
assert_eq!((u8::MAX / 2).cbrt_rem(), (5, 2));
assert_eq!((u16::MAX / 2).cbrt_rem(), (31, 2976));
assert_eq!((u32::MAX / 2).cbrt_rem(), (1290, 794647));
assert_eq!((u64::MAX / 2).cbrt_rem(), (2097151, 13194133241856));
assert_eq!((u128::MAX / 2).cbrt_rem(), (5541191377756, 58550521324026917344808511));
assert_eq!((u8::MAX / 4).cbrt_rem(), (3, 36));
assert_eq!((u16::MAX / 4).cbrt_rem(), (25, 758));
assert_eq!((u32::MAX / 4).cbrt_rem(), (1023, 3142656));
assert_eq!((u64::MAX / 4).cbrt_rem(), (1664510, 5364995536903));
assert_eq!((u128::MAX / 4).cbrt_rem(), (4398046511103, 58028439341489006246363136));
macro_rules! random_case {
($T:ty) => {
let n: $T = random();
let (root, rem) = n.cbrt_rem();
assert_eq!(root, n.cbrt());
let root = root as $T;
assert!(rem <= 3 * (root * root + root), "cbrt({}) remainder too large", n);
assert_eq!(n, root.pow(3) + rem, "cbrt({}) != {}, {}", n, root, rem);
};
}
const N: u32 = 10000;
for _ in 0..N {
random_case!(u16);
random_case!(u32);
random_case!(u64);
random_case!(u128);
}
}
}