1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
use super::{CubicRootRem, SquareRootRem};
use crate::DivRem;

pub(crate) trait NormalizedRootRem: Sized {
    type OutputRoot;

    /// Square root with the normalized input such that highest or second
    /// highest bit are set. For internal use only.
    fn normalized_sqrt_rem(self) -> (Self::OutputRoot, Self);

    /// Cubic root with the normalized input such that at least one of the
    /// highest three bits are set. For internal use only.
    fn normalized_cbrt_rem(self) -> (Self::OutputRoot, Self);
}

// Estimations of normalized 1/sqrt(x) with 9 bits precision. Specifically
// (rsqrt_tab[i] + 0x100) / 0x200 ≈ (sqrt(32) / sqrt(32 + i))
const RSQRT_TAB: [u8; 96] = [
    0xfc, 0xf4, 0xed, 0xe6, 0xdf, 0xd9, 0xd3, 0xcd, 0xc7, 0xc2, 0xbc, 0xb7, 0xb2, 0xad, 0xa9, 0xa4,
    0xa0, 0x9c, 0x98, 0x94, 0x90, 0x8c, 0x88, 0x85, 0x81, 0x7e, 0x7b, 0x77, 0x74, 0x71, 0x6e, 0x6b,
    0x69, 0x66, 0x63, 0x61, 0x5e, 0x5b, 0x59, 0x57, 0x54, 0x52, 0x50, 0x4d, 0x4b, 0x49, 0x47, 0x45,
    0x43, 0x41, 0x3f, 0x3d, 0x3b, 0x39, 0x37, 0x36, 0x34, 0x32, 0x30, 0x2f, 0x2d, 0x2c, 0x2a, 0x28,
    0x27, 0x25, 0x24, 0x22, 0x21, 0x1f, 0x1e, 0x1d, 0x1b, 0x1a, 0x19, 0x17, 0x16, 0x15, 0x14, 0x12,
    0x11, 0x10, 0x0f, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
];

// Estimations of normalized 1/cbrt(x) with 9 bits precision. Specifically
// (rcbrt_tab[i] + 0x100) / 0x200 ≈ (cbrt(8) / cbrt(8 + i))
const RCBRT_TAB: [u8; 56] = [
    0xf6, 0xe4, 0xd4, 0xc6, 0xb9, 0xae, 0xa4, 0x9b, 0x92, 0x8a, 0x83, 0x7c, 0x76, 0x70, 0x6b, 0x66,
    0x61, 0x5c, 0x57, 0x53, 0x4f, 0x4b, 0x48, 0x44, 0x41, 0x3e, 0x3b, 0x38, 0x35, 0x32, 0x2f, 0x2d,
    0x2a, 0x28, 0x25, 0x23, 0x21, 0x1f, 0x1d, 0x1b, 0x19, 0x17, 0x15, 0x13, 0x11, 0x10, 0x0e, 0x0c,
    0x0b, 0x09, 0x08, 0x06, 0x05, 0x03, 0x02, 0x01,
];

/// Fix the estimation error of `sqrt(n)`, `s` is the (mutable) estimation variable,
/// This procedure requires s <= `sqrt(n)`, returns the error `n - s^2`.
macro_rules! fix_sqrt_error {
    ($t:ty, $n:ident, $s:ident) => {{
        let mut e = $n - ($s as $t).pow(2);
        let mut elim = 2 * $s as $t + 1;
        while e >= elim {
            $s += 1;
            e -= elim;
            elim += 2;
        }
        e
    }};
}

/// Fix the estimation error of `cbrt(n)`, `c` is the (mutable) estimation variable,
/// This procedure requires c <= `cbrt(n)`, returns the error `n - c^3`.
macro_rules! fix_cbrt_error {
    ($t:ty, $n:ident, $c:ident) => {{
        let cc = ($c as $t).pow(2);
        let mut e = $n - cc * ($c as $t);
        let mut elim = 3 * (cc + $c as $t) + 1;
        while e >= elim {
            $c += 1;
            e -= elim;
            elim += 6 * ($c as $t);
        }
        e
    }};
}

impl NormalizedRootRem for u16 {
    type OutputRoot = u8;

    fn normalized_sqrt_rem(self) -> (u8, u16) {
        debug_assert!(self.leading_zeros() <= 1);

        // retrieved r ≈ √32 / √(n >> 9) * 0x200 = 1 / √(n >> 14) * 2^9 = 2^16 / √n.
        let r = 0x100 | RSQRT_TAB[(self >> 9) as usize - 32] as u32; // 9 bits
        let s = (r * self as u32) >> 16;
        let mut s = (s - 1) as u8; // to make sure s is an underestimate

        // then fix the estimation error
        let e = fix_sqrt_error!(u16, self, s);
        (s, e)
    }

    fn normalized_cbrt_rem(self) -> (u8, u16) {
        debug_assert!(self.leading_zeros() <= 2);

        // retrieved r ≈ ∛8 / ∛(n >> 9) * 0x200 = 1 / ∛(n >> 12) * 2^9 = 2^13 / ∛n.
        let adjust = self.leading_zeros() == 0;
        let r = 0x100 | RCBRT_TAB[(self >> (9 + (3 * adjust as u8))) as usize - 8] as u32; // 9 bits
        let r2 = (r * r) >> (2 + 2 * adjust as u8);
        let c = (r2 * self as u32) >> 24;
        let mut c = (c - 1) as u8; // to make sure c is an underestimate

        // step6: fix the estimation error, at most 2 steps are needed
        // if we use more bits to estimate the initial guess, less steps can be required
        let e = fix_cbrt_error!(u16, self, c);
        (c, e)
    }
}

/// Get the high part of widening mul on two u16 integers
#[inline]
fn wmul16_hi(a: u16, b: u16) -> u16 {
    (((a as u32) * (b as u32)) >> 16) as u16
}

impl NormalizedRootRem for u32 {
    type OutputRoot = u16;

    fn normalized_sqrt_rem(self) -> (u16, u32) {
        // Use newton's method on 1/sqrt(n)
        // x_{i+1} = x_i * (3 - n*x_i^2) / 2
        debug_assert!(self.leading_zeros() <= 1);

        // step1: lookup initial estimation of normalized 1/√n. The lookup table uses the highest 7 bits,
        // since the input is normalized, the lookup index must be larger than 2**(7-2) = 32.
        // then the retrieved r ≈ √32 / √(n >> 25) * 0x200 = 1 / √(n >> 30) / 2^9 = 2^24 / √n.
        let n16 = (self >> 16) as u16;
        let r = 0x100 | RSQRT_TAB[(n16 >> 9) as usize - 32] as u32; // 9 bits

        // step2: first Newton iteration (without dividing by 2)
        // r will be an estimation of 2^(24+6) / √n with 16 bits effective precision
        let r = ((3 * r as u16) << 5) - (wmul32_hi(self, r * r * r) >> 11) as u16; // 15 bits

        // step3: √n = x * 1/√n
        let r = r << 1; // normalize to 16 bits, now r estimates 2^31 / √n
        let mut s = wmul16_hi(r, n16).saturating_mul(2); // overflowing can happen
        s -= 4; // to make sure s is an underestimate

        // step4: second Newton iteration on √n
        let e = self - (s as u32) * (s as u32);
        s += wmul16_hi((e >> 16) as u16, r);

        // step5: fix the estimation error, at most 2 steps are needed
        // if we use more bits to estimate the initial guess, less steps can be required
        let e = fix_sqrt_error!(u32, self, s);
        (s, e)
    }

    fn normalized_cbrt_rem(self) -> (u16, u32) {
        // Use newton's method on 1/cbrt(n)
        // x_{i+1} = x_i * (4 - n*x_i^3) / 3
        debug_assert!(self.leading_zeros() <= 2);

        // step1: lookup initial estimation of 1/∛x. The lookup table uses the highest 6 bits up to 30rd.
        // if the input is 32/31 bit, then shift it to 29/28 bit.
        // retrieved r ≈ ∛8 / ∛(n >> 24) * 0x200 = 1 / ∛(n >> 27) * 2^9 = 2^18 / ∛n.
        let adjust = self.leading_zeros() < 2;
        let n16 = (self >> (16 + 3 * adjust as u8)) as u16;
        let r = 0x100 | RCBRT_TAB[(n16 >> 8) as usize - 8] as u32; // 9 bits

        // step2: first Newton iteration
        // required shift = 18 * 3 - 11 - 16 * 2 - * 2 = 11
        // afterwards, r ≈ 2^(18+11-4) / ∛n
        let r3 = (r * r * r) >> 11;
        let t = (4 << 11) - wmul16_hi(n16, r3 as u16); // 13 bits
        let mut r = ((r * t as u32 / 3) >> 4) as u16; // 16 bits
        r >>= adjust as u8; // recover the adjustment if needed

        // step5: ∛x = x * (1/∛x)^2
        let r = r - 10; // to make sure c is an underestimate
        let mut c = wmul16_hi(r, wmul16_hi(r, (self >> 16) as u16)) >> 2;

        // step6: fix the estimation error, at most 2 steps are needed
        // if we use more bits to estimate the initial guess, less steps can be required
        let e = fix_cbrt_error!(u32, self, c);
        (c, e)
    }
}

/// Get the high part of widening mul on two u32 integers
#[inline]
fn wmul32_hi(a: u32, b: u32) -> u32 {
    (((a as u64) * (b as u64)) >> 32) as u32
}

impl NormalizedRootRem for u64 {
    type OutputRoot = u32;

    fn normalized_sqrt_rem(self) -> (u32, u64) {
        // Use newton's method on 1/sqrt(n)
        // x_{i+1} = x_i * (3 - n*x_i^2) / 2
        debug_assert!(self.leading_zeros() <= 1);

        // step1: lookup initial estimation of normalized 1/√n. The lookup table uses the highest 7 bits,
        // since the input is normalized, the lookup index must be larger than 2**(7-2) = 32.
        // then the retrieved r ≈ √32 / √(n >> 57) * 0x200 = 1 / √(n >> 62) / 2^9 = 2^40 / √n.
        let n32 = (self >> 32) as u32;
        let r = 0x100 | RSQRT_TAB[(n32 >> 25) as usize - 32] as u32; // 9 bits

        // step2: first Newton iteration (without dividing by 2)
        // afterwards, r ≈ 2^(40+22) / √n with 16 bits effective precision
        let r = ((3 * r) << 21) - wmul32_hi(n32, (r * r * r) << 5); // 31 bits

        // step3: second Newton iteration (without dividing by 2)
        // afterwards, r ≈ 2^(40+19) / √n with 32 bits effective precision
        let t = (3 << 28) - wmul32_hi(r, wmul32_hi(r, n32)); // 29 bits
        let r = wmul32_hi(r, t); // 28 bits

        // step4: √n = x * 1/√n
        let r = r << 4; // normalize to 32 bits, now r estimates 2^63 / √n
        let mut s = wmul32_hi(r, n32) << 1;
        s -= 10; // to make sure s is an underestimate

        // step5: third Newton iteration on √n
        let e = self - (s as u64) * (s as u64);
        s += wmul32_hi((e >> 32) as u32, r);

        // step6: fix the estimation error, at most 2 steps are needed
        // if we use more bits to estimate the initial guess, less steps can be required
        let e = fix_sqrt_error!(u64, self, s);
        (s, e)
    }

    fn normalized_cbrt_rem(self) -> (u32, u64) {
        // Use newton's method on 1/cbrt(n)
        // x_{i+1} = x_i * (4 - n*x_i^3) / 3
        debug_assert!(self.leading_zeros() <= 2);

        // step1: lookup initial estimation of 1/∛x. The lookup table uses the highest 6 bits up to 63rd.
        // if the input has 64 bits, then shift it to 61 bits.
        // retrieved r ≈ ∛8 / ∛(n >> 57) * 0x200 = 1 / ∛(n >> 60) * 2^9 = 2^29 / ∛n.
        let adjust = self.leading_zeros() == 0;
        let n32 = (self >> (32 + 3 * adjust as u8)) as u32;
        let r = 0x100 | RCBRT_TAB[(n32 >> 25) as usize - 8] as u32; // 9 bits

        // step2: first Newton iteration
        // required shift = 29 * 3 - 32 * 2 = 23
        // afterwards, r ≈ 2^(29+23) / ∛n = 2^52 / ∛n
        let t = (4 << 23) - wmul32_hi(n32, r * r * r);
        let r = r * (t / 3); // 32 bits

        // step3: second Newton iteration
        // required shift = 52 * 3 - 32 * 4 = 28
        // afterwards, r ≈ 2^(52+28-32) / ∛n = 2^48 / ∛n
        let t = (4 << 28) - wmul32_hi(r, wmul32_hi(r, wmul32_hi(r, n32)));
        let mut r = wmul32_hi(r, t) / 3; // 28 bits
        r >>= adjust as u8; // recover the adjustment if needed

        // step4: ∛x = x * (1/∛x)^2 = x * (2^48/∛x)^2 / 2^(32*3)
        let r = r - 1; // to make sure c is an underestimate
        let mut c = wmul32_hi(r, wmul32_hi(r, (self >> 32) as u32));

        // step5: fix the estimation error, at most 3 steps are needed
        // if we use more bits to estimate the initial guess, less steps can be required
        let e = fix_cbrt_error!(u64, self, c);
        (c, e)
    }
}

impl NormalizedRootRem for u128 {
    type OutputRoot = u64;

    fn normalized_sqrt_rem(self) -> (u64, u128) {
        debug_assert!(self.leading_zeros() <= 1);

        // use the "Karatsuba Square Root" algorithm
        // (see the implementation in dashu_int, or https://hal.inria.fr/inria-00072854/en/)

        // step1: calculate sqrt on high parts
        let (a, b) = (self >> u64::BITS, self & u64::MAX as u128);
        let (a, b) = (a as u64, b as u64);
        let (s1, r1) = a.normalized_sqrt_rem();

        // step2: estimate the result with low parts
        // note that r1 <= 2*s1 < 2^(KBITS + 1)
        // here r0 = (r1*B + b) / 2
        const KBITS: u32 = u64::BITS / 2;
        let r0 = r1 << (KBITS - 1) | b >> (KBITS + 1);
        let (mut q, mut u) = r0.div_rem(s1 as u64);
        if q >> KBITS > 0 {
            // if q >= B (then q = B), reduce the overestimate
            q -= 1;
            u += s1 as u64;
        }

        let mut s = (s1 as u64) << KBITS | q;
        let r = (u << (KBITS + 1)) | (b & ((1 << (KBITS + 1)) - 1));
        let q2 = q * q;
        let mut c = (u >> (KBITS - 1)) as i8 - (r < q2) as i8;
        let mut r = r.wrapping_sub(q2);

        // step3: fix the estimation error if necessary
        if c < 0 {
            let (new_r, c1) = r.overflowing_add(s);
            s -= 1;
            let (new_r, c2) = new_r.overflowing_add(s);
            r = new_r;
            c += c1 as i8 + c2 as i8;
        }
        (s, (c as u128) << u64::BITS | r as u128)
    }

    fn normalized_cbrt_rem(self) -> (u64, u128) {
        debug_assert!(self.leading_zeros() <= 2);

        /*
         * the following algorithm is similar to the "Karatsuba Square Root" above:
         * assume n = a*B^3 + b2*B^2 + b1*B + b0, B=2^k, a has roughly 3k bits
         * 1. calculate cbrt on high part:
         *     c1, r1 = cbrt_rem(a)
         * 2. estimate the root with low part
         *     q, u = div_rem(r1*B + b2, 3*c1^2)
         *     c = c1*B + q
         *     r = u*B^2 + b1*B + b0 - 3*c1*q^2*B - q^3
         *
         * 3. if a5 is normalized, then only few adjustments are needed
         *     while r < 0 {
         *         r += 3*c^2 - 3*c + 1
         *         c -= 1
         *     }
         */

        // step1: calculate cbrt on high 62 bits
        let (c1, r1) = if self.leading_zeros() > 0 {
            // actually on high 65 bits
            let a = (self >> 63) as u64;
            let (mut c, _) = a.normalized_cbrt_rem();
            c >>= 1;
            (c, (a >> 3) - (c as u64).pow(3))
        } else {
            let a = (self >> 66) as u64;
            a.normalized_cbrt_rem()
        };

        // step2: estimate the root with low part
        const KBITS: u32 = 22;
        let r0 = ((r1 as u128) << KBITS) | (self >> (2 * KBITS) & ((1 << KBITS) - 1));
        let (q, u) = r0.div_rem(3 * (c1 as u128).pow(2));
        let mut c = ((c1 as u64) << KBITS) + (q as u64); // here q might be larger than B

        // r = u*B^2 + b1*B + b0 - 3*c1*q^2*B - q^3
        let t1 = (u << (2 * KBITS)) | (self & ((1 << (2 * KBITS)) - 1));
        let t2 = (((3 * (c1 as u128)) << KBITS) + q) * q.pow(2);
        let mut r = t1 as i128 - t2 as i128;

        // step3: adjustment, finishes in at most 4 steps
        while r < 0 {
            r += 3 * (c as i128 - 1) * c as i128 + 1;
            c -= 1;
        }
        (c, r as u128)
    }
}

// The implementation for u8 is very naive, because it's rarely used
impl SquareRootRem for u8 {
    type Output = u8;

    #[inline]
    fn sqrt_rem(&self) -> (u8, u8) {
        // brute-force search, because there are only 16 possibilites.
        let mut s = 0;
        let e = fix_sqrt_error!(u8, self, s);
        (s, e)
    }
}

impl CubicRootRem for u8 {
    type Output = u8;

    #[inline]
    fn cbrt_rem(&self) -> (u8, u8) {
        // brute-force search, because there are only 7 possibilites.
        let mut c = 0;
        let e = fix_cbrt_error!(u8, self, c);
        (c, e)
    }
}

macro_rules! impl_rootrem_using_normalized {
    ($t:ty, $half:ty) => {
        impl SquareRootRem for $t {
            type Output = $half;

            fn sqrt_rem(&self) -> ($half, $t) {
                if *self == 0 {
                    return (0, 0);
                }

                // normalize the input and call the normalized subroutine
                let shift = self.leading_zeros() & !1; // make sure shift is divisible by 2
                let (mut root, mut rem) = (self << shift).normalized_sqrt_rem();
                if shift != 0 {
                    root >>= shift / 2;
                    rem = self - (root as $t).pow(2);
                }
                (root, rem)
            }
        }

        impl CubicRootRem for $t {
            type Output = $half;

            fn cbrt_rem(&self) -> ($half, $t) {
                if *self == 0 {
                    return (0, 0);
                }

                // normalize the input and call the normalized subroutine
                let mut shift = self.leading_zeros();
                shift -= shift % 3; // make sure shift is divisible by 3
                let (mut root, mut rem) = (self << shift).normalized_cbrt_rem();
                if shift != 0 {
                    root >>= shift / 3;
                    rem = self - (root as $t).pow(3);
                }
                (root, rem)
            }
        }
    };
}
impl_rootrem_using_normalized!(u16, u8);
impl_rootrem_using_normalized!(u32, u16);
impl_rootrem_using_normalized!(u64, u32);
impl_rootrem_using_normalized!(u128, u64);

#[cfg(test)]
mod tests {
    use super::*;
    use crate::math::{CubicRoot, SquareRoot};
    use rand::random;

    #[test]
    fn test_sqrt() {
        assert_eq!(2u8.sqrt_rem(), (1, 1));
        assert_eq!(2u16.sqrt_rem(), (1, 1));
        assert_eq!(2u32.sqrt_rem(), (1, 1));
        assert_eq!(2u64.sqrt_rem(), (1, 1));
        assert_eq!(2u128.sqrt_rem(), (1, 1));

        assert_eq!(u8::MAX.sqrt_rem(), (15, 30));
        assert_eq!(u16::MAX.sqrt_rem(), (u8::MAX, (u8::MAX as u16) * 2));
        assert_eq!(u32::MAX.sqrt_rem(), (u16::MAX, (u16::MAX as u32) * 2));
        assert_eq!(u64::MAX.sqrt_rem(), (u32::MAX, (u32::MAX as u64) * 2));
        assert_eq!(u128::MAX.sqrt_rem(), (u64::MAX, (u64::MAX as u128) * 2));

        assert_eq!((u8::MAX / 2).sqrt_rem(), (11, 6));
        assert_eq!((u16::MAX / 2).sqrt_rem(), (181, 6));
        assert_eq!((u32::MAX / 2).sqrt_rem(), (46340, 88047));
        assert_eq!((u64::MAX / 2).sqrt_rem(), (3037000499, 5928526806));
        assert_eq!((u128::MAX / 2).sqrt_rem(), (13043817825332782212, 9119501915260492783));

        // some cases from previous bugs
        assert_eq!(65533u32.sqrt_rem(), (255, 508));

        macro_rules! random_case {
            ($T:ty) => {
                let n: $T = random();
                let (root, rem) = n.sqrt_rem();
                assert_eq!(root, n.sqrt());

                assert!(rem <= (root as $T) * 2, "sqrt({}) remainder too large", n);
                assert_eq!(n, (root as $T).pow(2) + rem, "sqrt({}) != {}, {}", n, root, rem);
            };
        }

        const N: u32 = 10000;
        for _ in 0..N {
            random_case!(u8);
            random_case!(u16);
            random_case!(u32);
            random_case!(u64);
            random_case!(u128);
        }
    }

    #[test]
    fn test_cbrt() {
        assert_eq!(2u8.cbrt_rem(), (1, 1));
        assert_eq!(2u16.cbrt_rem(), (1, 1));
        assert_eq!(2u32.cbrt_rem(), (1, 1));
        assert_eq!(2u64.cbrt_rem(), (1, 1));
        assert_eq!(2u128.cbrt_rem(), (1, 1));

        assert_eq!((u8::MAX / 2).cbrt_rem(), (5, 2));
        assert_eq!((u16::MAX / 2).cbrt_rem(), (31, 2976));
        assert_eq!((u32::MAX / 2).cbrt_rem(), (1290, 794647));
        assert_eq!((u64::MAX / 2).cbrt_rem(), (2097151, 13194133241856));
        assert_eq!((u128::MAX / 2).cbrt_rem(), (5541191377756, 58550521324026917344808511));
        assert_eq!((u8::MAX / 4).cbrt_rem(), (3, 36));
        assert_eq!((u16::MAX / 4).cbrt_rem(), (25, 758));
        assert_eq!((u32::MAX / 4).cbrt_rem(), (1023, 3142656));
        assert_eq!((u64::MAX / 4).cbrt_rem(), (1664510, 5364995536903));
        assert_eq!((u128::MAX / 4).cbrt_rem(), (4398046511103, 58028439341489006246363136));

        macro_rules! random_case {
            ($T:ty) => {
                let n: $T = random();
                let (root, rem) = n.cbrt_rem();
                assert_eq!(root, n.cbrt());

                let root = root as $T;
                assert!(rem <= 3 * (root * root + root), "cbrt({}) remainder too large", n);
                assert_eq!(n, root.pow(3) + rem, "cbrt({}) != {}, {}", n, root, rem);
            };
        }

        const N: u32 = 10000;
        for _ in 0..N {
            random_case!(u16);
            random_case!(u32);
            random_case!(u64);
            random_case!(u128);
        }
    }
}