darwin_rs/
simulation_builder.rs

1//! This module defines helper functions (builder pattern) to create a valid simulation.
2//!
3//! darwin-rs: evolutionary algorithms with Rust
4//!
5//! Written by Willi Kappler, Version 0.4 (2017.06.26)
6//!
7//! Repository: https://github.com/willi-kappler/darwin-rs
8//!
9//! License: MIT
10//!
11//! This library allows you to write evolutionary algorithms (EA) in Rust.
12//! Examples provided: TSP, Sudoku, Queens Problem, OCR
13//!
14//!
15
16use std;
17
18use simulation::{Simulation, SimulationType, SimulationResult};
19use individual::{Individual};
20use population::Population;
21
22/// This is a helper struct in order to build (configure) a valid simulation.
23/// See builder pattern: https://en.wikipedia.org/wiki/Builder_pattern
24///
25/// Maybe use phantom types, see https://github.com/willi-kappler/darwin-rs/issues/9
26pub struct SimulationBuilder<T: Individual + Send + Sync> {
27    /// The actual simulation.
28    simulation: Simulation<T>,
29}
30
31error_chain! {
32    errors {
33        EndIterationTooLow
34    }
35}
36
37/// This implementation contains all the helper method to build (configure) a valid simulation.
38impl<T: Individual + Send + Sync> SimulationBuilder<T> {
39    /// Start with this method, it must always be called as the first one.
40    /// It creates a default simulation with some dummy (but invalid) values.
41    pub fn new() -> SimulationBuilder<T> {
42        SimulationBuilder {
43            simulation: Simulation {
44                type_of_simulation: SimulationType::EndIteration(10),
45                num_of_threads: 2,
46                habitat: Vec::new(),
47                total_time_in_ms: 0.0,
48                simulation_result: SimulationResult {
49                    improvement_factor: std::f64::MAX,
50                    original_fitness: std::f64::MAX,
51                    fittest: Vec::new(),
52                    iteration_counter: 0
53                },
54                share_fittest: false,
55                num_of_global_fittest: 10,
56                output_every: 10,
57                output_every_counter: 0,
58                share_every: 10,
59                share_counter: 0
60            },
61        }
62    }
63
64    /// Set the total number of iterations for the simulation and thus sets the simulation
65    /// type to `EndIteration`. (Only usefull in combination with `EndIteration`).
66    pub fn iterations(mut self, iterations: u32) -> SimulationBuilder<T> {
67        self.simulation.type_of_simulation = SimulationType::EndIteration(iterations);
68        self
69    }
70
71    /// Set the improvement factor stop criteria for the simulation and thus sets the simulation
72    /// type to `EndFactor`. (Only usefull in combination with `EndFactor`).
73    pub fn factor(mut self, factor: f64) -> SimulationBuilder<T> {
74        self.simulation.type_of_simulation = SimulationType::EndFactor(factor);
75        self
76    }
77
78    /// Set the minimum fitness stop criteria for the simulation and thus sets the simulation
79    /// type to `EndFitness`. (Only usefull in combination with `EndFactor`).
80    pub fn fitness(mut self, fitness: f64) -> SimulationBuilder<T> {
81        self.simulation.type_of_simulation = SimulationType::EndFitness(fitness);
82        self
83    }
84
85    /// Sets the number of threads in order to speed up the simulation.
86    pub fn threads(mut self, threads: usize) -> SimulationBuilder<T> {
87        self.simulation.num_of_threads = threads;
88        self
89    }
90
91    /// Add a population to the simulation.
92    pub fn add_population(mut self, population: Population<T>) -> SimulationBuilder<T> {
93        self.simulation.habitat.push(population);
94        self
95    }
96
97    /// Add multiple populations to the simulation.
98    pub fn add_multiple_populations(mut self, multiple_populations: Vec<Population<T>>) -> SimulationBuilder<T> {
99        for population in multiple_populations {
100            self.simulation.habitat.push(population);
101        }
102        self
103    }
104
105    /// If this option is enabled (default: off), then the fittest individual of all populations
106    /// is shared between all populations.
107    pub fn share_fittest(mut self) -> SimulationBuilder<T> {
108        self.simulation.share_fittest = true;
109        self
110    }
111
112    /// How many global fittest should be kept ? (The size of the "high score list")
113    pub fn num_of_global_fittest(mut self, num_of_global_fittest: usize) -> SimulationBuilder<T> {
114        self.simulation.num_of_global_fittest = num_of_global_fittest;
115        self
116    }
117
118    /// Do not output every time a new individual is found, only every nth time.
119    /// n == output_every
120    pub fn output_every(mut self, output_every: u32) -> SimulationBuilder<T> {
121        self.simulation.output_every = output_every;
122        self
123    }
124
125    /// If share fittest is enabled and the number share_every of iteration has passed then
126    /// the fittest individual is shared between all populations
127    pub fn share_every(mut self, share_every: u32) -> SimulationBuilder<T> {
128        self.simulation.share_every = share_every;
129        self
130    }
131
132    /// This checks the configuration of the simulation and returns an error or Ok if no errors
133    /// where found.
134    pub fn finalize(self) -> Result<Simulation<T>> {
135        match self.simulation {
136            Simulation { type_of_simulation: SimulationType::EndIteration(0...9), .. } => {
137                Err(ErrorKind::EndIterationTooLow.into())
138            }
139            _ => Ok(self.simulation),
140        }
141    }
142}