1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
pub use crypto_box::aead::Error;
use crypto_box::aead::{generic_array::GenericArray, Aead};
pub use crypto_box::{Box, PublicKey, SecretKey};
pub use dark_crystal_secret_sharing_rust::{
combine_authenticated, default_threshold, share_authenticated, thresold_sanity, RecoveryError,
ShareError,
};
use rand::Rng;
use std::convert::TryInto;
use std::fmt;
use zeroize::Zeroize;
const PUBLIC_KEY_LENGTH: usize = 32;
const NONCE_LENGTH: usize = 24;
#[derive(Debug)]
pub struct EncryptedShareSet {
pub ciphertext: Vec<u8>,
pub encrypted_shares: Vec<Vec<u8>>,
pub eph_public_key: PublicKey,
}
pub fn share_and_encrypt(
public_keys: Vec<[u8; PUBLIC_KEY_LENGTH]>,
secret: Vec<u8>,
threshold: u8,
) -> Result<EncryptedShareSet, ShareAndEncryptError> {
let num_shares = public_keys.len().try_into().unwrap();
let (shares, ciphertext) = share_authenticated(&secret, num_shares, threshold)?;
let mut encrypted_shares: Vec<Vec<u8>> = Vec::new();
let mut rng = crypto_box::rand_core::OsRng;
let eph_secret_key = SecretKey::generate(&mut rng);
let eph_public_key = eph_secret_key.public_key();
let mut eph_secret_key_bytes = eph_secret_key.as_bytes().clone();
for share_index in 0..public_keys.len() {
let share = &shares[share_index];
let pk = PublicKey::from(public_keys[share_index]);
let esk = SecretKey::from(eph_secret_key_bytes);
encrypted_shares.push(encrypt(esk, pk, share.to_vec())?);
}
eph_secret_key_bytes.zeroize();
Ok(EncryptedShareSet {
encrypted_shares,
ciphertext,
eph_public_key,
})
}
pub fn share_and_encrypt_detached_nonce(
public_keys: Vec<[u8; PUBLIC_KEY_LENGTH]>,
secret: Vec<u8>,
threshold: u8,
) -> Result<EncryptedShareSet, ShareAndEncryptError> {
let num_shares = public_keys.len().try_into().unwrap();
let (shares, ciphertext) = share_authenticated(&secret, num_shares, threshold)?;
let mut encrypted_shares: Vec<Vec<u8>> = Vec::new();
let mut rng = crypto_box::rand_core::OsRng;
let eph_secret_key = SecretKey::generate(&mut rng);
let eph_public_key = eph_secret_key.public_key();
let mut eph_secret_key_bytes = eph_secret_key.as_bytes().clone();
let nonce: [u8; NONCE_LENGTH] = ciphertext.clone()[..NONCE_LENGTH].try_into().unwrap();
for share_index in 0..public_keys.len() {
let share = &shares[share_index];
let pk = PublicKey::from(public_keys[share_index]);
let esk = SecretKey::from(eph_secret_key_bytes);
encrypted_shares.push(encrypt_with_given_nonce(esk, pk, share.to_vec(), nonce)?);
}
eph_secret_key_bytes.zeroize();
Ok(EncryptedShareSet {
encrypted_shares,
ciphertext,
eph_public_key,
})
}
pub fn encrypt(
secret_key: SecretKey,
public_key: PublicKey,
plaintext: Vec<u8>,
) -> Result<Vec<u8>, Error> {
let alice_box = Box::new(&public_key, &secret_key);
let mut rng = crypto_box::rand_core::OsRng;
let nonce_bytes = rng.gen::<[u8; NONCE_LENGTH]>();
let nonce = GenericArray::from_slice(&nonce_bytes);
let mut ciphertext_with_nonce = nonce_bytes.to_vec();
let ciphertext = alice_box.encrypt(&nonce, &plaintext[..])?;
ciphertext_with_nonce.extend(ciphertext);
Ok(ciphertext_with_nonce)
}
pub fn decrypt(
secret_key: SecretKey,
public_key: &PublicKey,
ciphertext_with_nonce: &Vec<u8>,
) -> Result<Vec<u8>, Error> {
let ciphertext = &ciphertext_with_nonce[NONCE_LENGTH..];
let nonce = GenericArray::from_slice(&ciphertext_with_nonce[..NONCE_LENGTH]);
let bob_box = Box::new(public_key, &secret_key);
bob_box.decrypt(&nonce, &ciphertext[..])
}
pub fn encrypt_with_given_nonce(
secret_key: SecretKey,
public_key: PublicKey,
plaintext: Vec<u8>,
nonce: [u8; NONCE_LENGTH],
) -> Result<Vec<u8>, Error> {
let alice_box = Box::new(&public_key, &secret_key);
let nonce = GenericArray::from_slice(&nonce);
alice_box.encrypt(&nonce, &plaintext[..])
}
pub fn decrypt_with_given_nonce(
secret_key: SecretKey,
public_key: &PublicKey,
ciphertext: &Vec<u8>,
nonce: [u8; NONCE_LENGTH],
) -> Result<Vec<u8>, Error> {
let nonce = GenericArray::from_slice(&nonce);
let bob_box = Box::new(public_key, &secret_key);
bob_box.decrypt(&nonce, &ciphertext[..])
}
#[derive(Debug)]
pub struct ShareAndEncryptError {
pub message: String,
}
impl fmt::Display for ShareAndEncryptError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Error during recovery {}", self.message)
}
}
impl From<crypto_box::aead::Error> for ShareAndEncryptError {
fn from(error: crypto_box::aead::Error) -> Self {
ShareAndEncryptError {
message: error.to_string(),
}
}
}
impl From<ShareError> for ShareAndEncryptError {
fn from(error: ShareError) -> Self {
ShareAndEncryptError {
message: error.to_string(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use dark_crystal_secret_sharing_rust::combine_authenticated;
#[test]
fn encryption() {
let mut rng = crypto_box::rand_core::OsRng;
let alice_secret_key = SecretKey::generate(&mut rng);
let alice_public_key = alice_secret_key.public_key();
let bob_secret_key = SecretKey::generate(&mut rng);
let bob_public_key = bob_secret_key.public_key();
let plaintext = b"hello";
let ciphertext = encrypt(alice_secret_key, bob_public_key, plaintext.to_vec()).unwrap();
let decrypted_plaintext = decrypt(bob_secret_key, &alice_public_key, &ciphertext).unwrap();
assert_eq!(&plaintext[..], &decrypted_plaintext[..]);
}
#[test]
fn encryption_with_given_nonce() {
let mut rng = crypto_box::rand_core::OsRng;
let alice_secret_key = SecretKey::generate(&mut rng);
let alice_public_key = alice_secret_key.public_key();
let bob_secret_key = SecretKey::generate(&mut rng);
let bob_public_key = bob_secret_key.public_key();
let nonce = rng.gen::<[u8; NONCE_LENGTH]>();
let plaintext = b"hello";
let ciphertext =
encrypt_with_given_nonce(alice_secret_key, bob_public_key, plaintext.to_vec(), nonce)
.unwrap();
let decrypted_plaintext =
decrypt_with_given_nonce(bob_secret_key, &alice_public_key, &ciphertext, nonce)
.unwrap();
assert_eq!(&plaintext[..], &decrypted_plaintext[..]);
}
#[test]
fn test_share_and_encrypt() {
let mut rng = crypto_box::rand_core::OsRng;
let alice_secret_key = SecretKey::generate(&mut rng);
let alice_public_key = alice_secret_key.public_key();
let bob_secret_key = SecretKey::generate(&mut rng);
let bob_public_key = bob_secret_key.public_key();
let mut public_keys: Vec<[u8; PUBLIC_KEY_LENGTH]> = Vec::new();
public_keys.push(*bob_public_key.as_bytes());
public_keys.push(*alice_public_key.as_bytes());
let original_secret = b"hello";
let encrypted_share_set =
share_and_encrypt(public_keys, original_secret[..].to_vec(), 2).unwrap();
assert_eq!(encrypted_share_set.encrypted_shares.len(), 2);
assert_eq!(encrypted_share_set.encrypted_shares[0].len(), 73);
let mut decrypted_shares: Vec<Vec<u8>> = Vec::new();
decrypted_shares.push(
decrypt(
alice_secret_key,
&encrypted_share_set.eph_public_key,
&encrypted_share_set.encrypted_shares[1],
)
.unwrap(),
);
decrypted_shares.push(
decrypt(
bob_secret_key,
&encrypted_share_set.eph_public_key,
&encrypted_share_set.encrypted_shares[0],
)
.unwrap(),
);
let recovered_secret =
combine_authenticated(decrypted_shares, encrypted_share_set.ciphertext).unwrap();
assert_eq!(recovered_secret, b"hello");
}
#[test]
fn test_share_and_encrypt_detached_nonce() {
let mut rng = crypto_box::rand_core::OsRng;
let alice_secret_key = SecretKey::generate(&mut rng);
let alice_public_key = alice_secret_key.public_key();
let bob_secret_key = SecretKey::generate(&mut rng);
let bob_public_key = bob_secret_key.public_key();
let mut public_keys: Vec<[u8; PUBLIC_KEY_LENGTH]> = Vec::new();
public_keys.push(*bob_public_key.as_bytes());
public_keys.push(*alice_public_key.as_bytes());
let original_secret = b"hello";
let encrypted_share_set =
share_and_encrypt_detached_nonce(public_keys, original_secret[..].to_vec(), 2).unwrap();
assert_eq!(encrypted_share_set.encrypted_shares.len(), 2);
assert_eq!(encrypted_share_set.encrypted_shares[0].len(), 49);
let nonce = encrypted_share_set.ciphertext.clone()[..NONCE_LENGTH]
.try_into()
.unwrap();
let mut decrypted_shares: Vec<Vec<u8>> = Vec::new();
decrypted_shares.push(
decrypt_with_given_nonce(
alice_secret_key,
&encrypted_share_set.eph_public_key,
&encrypted_share_set.encrypted_shares[1],
nonce,
)
.unwrap(),
);
decrypted_shares.push(
decrypt_with_given_nonce(
bob_secret_key,
&encrypted_share_set.eph_public_key,
&encrypted_share_set.encrypted_shares[0],
nonce,
)
.unwrap(),
);
let recovered_secret =
combine_authenticated(decrypted_shares, encrypted_share_set.ciphertext).unwrap();
assert_eq!(recovered_secret, b"hello");
}
}