1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
use crate::archive::DamlLfArchive;
use crate::convert;
use crate::element::DamlArchive;
use crate::error::{DamlLfError, DamlLfResult};
use crate::manifest::DarManifest;
use crate::DEFAULT_ARCHIVE_NAME;
use std::ffi::OsStr;
use std::fs::File;
use std::io::Read;
use std::path::{Path, PathBuf};
use zip::ZipArchive;
const MANIFEST_FILE_PATH: &str = "META-INF/MANIFEST.MF";
const DALF_FILE_EXTENSION: &str = "dalf";
const DALF_PRIM_FILE_SUFFIX: &str = "-prim";
/// A collection of `Daml LF` archives combined with a manifest file (aka a `dar` file).
///
/// A `DarFile` contains a `main` [`DamlLfArchive`] and collection of `dependencies` [`DamlLfArchive`] combined with
/// a [`DarManifest`].
#[derive(Debug, Clone)]
pub struct DarFile {
pub manifest: DarManifest,
pub main: DamlLfArchive,
pub dependencies: Vec<DamlLfArchive>,
}
impl DarFile {
/// Create a new `DarFile` from an existing `manifest` file, main and `dependencies` [`DamlLfArchive`].
///
/// Note that this method does not validate that the supplied `manifest` correctly reflects the `main` and
/// `dependencies` [`DamlLfArchive`] provided and so may yield an invalid `DarFile`.
pub fn new(
manifest: impl Into<DarManifest>,
main: impl Into<DamlLfArchive>,
dependencies: impl Into<Vec<DamlLfArchive>>,
) -> Self {
Self {
manifest: manifest.into(),
main: main.into(),
dependencies: dependencies.into(),
}
}
/// Create a `DarFile` from the supplied `dar` file.
///
/// There are currently two supported `dar` formats supported by this module, `legacy` and `fat`. Parsing will
/// first attempt to parse a `fat` `dar`. If parsing fails an attempt will be made to parse a `legacy` `dar`
/// instead.
///
/// # Dar Format
///
/// Both formats are compressed zip archives with a `dar` extension which contain a `META-INF/MANIFEST.MF` file and
/// one or more `dalf` files, potentially nested in a sub folders.
///
/// If `dar` file provided does not contain a manifest or if the manifest does not contain all mandatory fields then
/// parsing will fail.
///
/// The manifest file of `legacy` `dar` files will not be read, instead it will be inferred from the set of `dalf`
/// files within the file. The following combinations are considered valid for `legacy` `dar` files:
///
/// - A `dar` file containing only a single non-prim `dalf` file (anywhere)
/// - A `dar` file containing a single non-prim `dalf` file and a single prim `dalf` file (ending with the `-prim`
/// suffix)
/// - A `dar` file containing only a single prim (ending with the `-prim` suffix) file
///
/// # Errors
///
/// If the file cannot be read then an [`IoError`] will be returned.
///
/// If the file cannot be interpreted as a `zip` archive then a [`DarParseError`] will be returned.
///
/// Should both `fat` and `legacy` parsing attempts fail then a [`DarParseError`] will be returned.
///
/// # Examples
///
/// ```no_run
/// # use daml_lf::DarFile;
/// # use daml_lf::DamlLfResult;
/// # use daml_lf::DamlLfHashFunction;
/// # fn main() -> DamlLfResult<()> {
/// let dar = DarFile::from_file("Example.dar")?;
/// assert_eq!(&DamlLfHashFunction::Sha256, dar.main().hash_function());
/// # Ok(())
/// # }
/// ```
/// [`IoError`]: DamlLfError::IoError
/// [`DarParseError`]: DamlLfError::DarParseError
pub fn from_file(path: impl AsRef<Path>) -> DamlLfResult<Self> {
let dar_file = std::fs::File::open(path)?;
let mut zip_archive = zip::ZipArchive::new(dar_file)?;
let manifest = match Self::parse_dar_manifest_from_file(&mut zip_archive) {
Ok(manifest) => Ok(manifest),
Err(_) => Self::make_manifest_from_archive(&mut zip_archive),
}?;
let dalf_main = Self::parse_dalf_from_archive(&mut zip_archive, manifest.dalf_main())?;
let dalf_dependencies = Self::parse_dalfs_from_archive(&mut zip_archive, manifest.dalf_dependencies())?;
Ok(Self::new(manifest, dalf_main, dalf_dependencies))
}
/// Create a [`DamlArchive`] from this [`DarFile`] and apply it to `f`.
///
/// The created [`DamlArchive`] borrows all interned string data from this [`DarFile`] and is therefore tied to the
/// lifetime of the [`DarFile`] and so cannot be returned from this scope. The [`DamlArchive`] can be accessed from
/// the supplied closure `f` which may return owned data.
///
/// Use [`DarFile::to_owned_archive`] to create a [`DamlArchive`] which does not borrow any data from the generating
/// [`DarFile`].
///
/// # Examples
///
/// ```no_run
/// # use daml_lf::DarFile;
/// # use daml_lf::DamlLfResult;
/// # fn main() -> DamlLfResult<()> {
/// let dar = DarFile::from_file("Example.dar")?;
/// // create a DamlArchive from this DarFile and extract the (owned) name.
/// let name = dar.apply(|archive| archive.name().to_owned())?;
/// assert_eq!("Example-1.0.0", name);
/// Ok(())
/// # }
/// ```
pub fn apply<R, F>(&self, f: F) -> DamlLfResult<R>
where
F: FnOnce(&DamlArchive<'_>) -> R,
{
convert::apply_dar(self, f)
}
/// Create an owned [`DamlArchive`] from this [`DarFile`].
///
/// This is an expensive operation as it involves both a conversion of the [`DarFile`] to a [`DamlArchive`] (which
/// borrows all interned strings) and a subsequent conversion to an owned [`DamlArchive`] which clones all interned
/// strings.
///
/// Use this when an owned instance of a [`DamlArchive`] is required, such as for passing to a thread. For other
/// cases consider using the [`DarFile::apply`] method which does not require the second conversion.
///
/// # Examples
///
/// ```no_run
/// # use daml_lf::DarFile;
/// # use daml_lf::DamlLfResult;
/// # fn main() -> DamlLfResult<()> {
/// let dar = DarFile::from_file("Example.dar")?;
/// let archive = dar.to_owned_archive()?;
/// assert_eq!("TestingTypes-1.0.0", archive.name());
/// # Ok(())
/// # }
/// ```
pub fn to_owned_archive(&self) -> DamlLfResult<DamlArchive<'static>> {
convert::to_owned_archive(self)
}
/// The `manifest` information contained within this `DarFile`.
pub const fn manifest(&self) -> &DarManifest {
&self.manifest
}
/// The `main` [`DamlLfArchive`] contained within this `DarFile`.
pub const fn main(&self) -> &DamlLfArchive {
&self.main
}
/// A collection of `dependencies` [`DamlLfArchive`] contained within this `DarFile`.
pub const fn dependencies(&self) -> &Vec<DamlLfArchive> {
&self.dependencies
}
fn is_dalf(path: &Path) -> bool {
path.extension().and_then(OsStr::to_str).map(str::to_lowercase).map_or(false, |q| q == DALF_FILE_EXTENSION)
}
fn is_prim_dalf(path: &Path) -> bool {
path.file_stem()
.and_then(OsStr::to_str)
.map(str::to_lowercase)
.map_or(false, |p| p.ends_with(DALF_PRIM_FILE_SUFFIX))
}
fn make_manifest_from_archive(zip_archive: &mut ZipArchive<File>) -> DamlLfResult<DarManifest> {
let dalf_paths = zip_archive.paths();
let (prim, main): (Vec<PathBuf>, Vec<PathBuf>) =
dalf_paths.into_iter().filter(|d| Self::is_dalf(d)).partition(|d| Self::is_prim_dalf(d));
let (dalf_main_path, dalf_dependencies_paths) = match (prim.as_slice(), main.as_slice()) {
([p], [m]) => Ok((p, vec![m])),
([p], []) => Ok((p, vec![])),
([], [m]) => Ok((m, vec![])),
_ => Err(DamlLfError::new_dar_parse_error("invalid legacy Dar")),
}?;
let manifest = DarManifest::new_implied(
dalf_main_path.display().to_string(),
dalf_dependencies_paths.into_iter().map(|d| d.display().to_string()).collect(),
);
Ok(manifest)
}
fn parse_dalfs_from_archive(
zip_archive: &mut ZipArchive<File>,
paths: &[String],
) -> DamlLfResult<Vec<DamlLfArchive>> {
paths
.iter()
.map(|dalf_path| Self::parse_dalf_from_archive(zip_archive, dalf_path))
.collect::<DamlLfResult<Vec<DamlLfArchive>>>()
}
#[allow(clippy::cast_possible_truncation)]
fn parse_dalf_from_archive(zip_archive: &mut ZipArchive<File>, location: &str) -> DamlLfResult<DamlLfArchive> {
let mut file = zip_archive.by_name(location)?;
let mut buf = Vec::with_capacity(file.size() as usize);
file.read_to_end(&mut buf)?;
let archive_name_buffer = PathBuf::from(location);
let archive_name_stem = archive_name_buffer.file_stem().and_then(OsStr::to_str).unwrap_or(DEFAULT_ARCHIVE_NAME);
DamlLfArchive::from_bytes_named(archive_name_stem, buf)
}
fn parse_dar_manifest_from_file(zip_archive: &mut ZipArchive<File>) -> DamlLfResult<DarManifest> {
let mut file = zip_archive.by_name(MANIFEST_FILE_PATH)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
DarManifest::parse(&contents)
}
}
trait ZipArchiveEx<T> {
fn paths(&mut self) -> Vec<PathBuf>;
fn contains(&mut self, path: &str) -> bool;
}
impl ZipArchiveEx<File> for ZipArchive<File> {
fn paths(&mut self) -> Vec<PathBuf> {
let mut paths = Vec::with_capacity(self.len());
for i in 0..self.len() {
if let Ok(file) = self.by_index(i) {
paths.push(PathBuf::from(file.name()));
}
}
paths
}
fn contains(&mut self, path: &str) -> bool {
self.by_name(path).is_ok()
}
}