1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
use crate::*;

/// Declares a light source that illuminates a scene.
#[derive(Clone, Debug)]
pub struct Light {
    /// A text string containing the unique identifier of the element.
    pub id: Option<String>,
    /// The text string name of this element.
    pub name: Option<String>,
    /// Asset management information about this element.
    pub asset: Option<Box<Asset>>,
    /// The kind of light being described.
    pub kind: LightKind,
    /// Declares the information used to process some portion of the content. (optional)
    pub technique: Vec<Technique>,
    /// Provides arbitrary additional information about this element.
    pub extra: Vec<Extra>,
}

impl Light {
    /// Construct a new `Light` with the given name and kind.
    pub fn new(id: impl Into<String>, name: Option<String>, kind: impl Into<LightKind>) -> Self {
        Self {
            id: Some(id.into()),
            name,
            asset: None,
            kind: kind.into(),
            technique: vec![],
            extra: vec![],
        }
    }
}

impl XNode for Light {
    const NAME: &'static str = "light";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        Ok(Light {
            id: element.attr("id").map(Into::into),
            name: element.attr("name").map(Into::into),
            asset: Asset::parse_opt_box(&mut it)?,
            kind: parse_one(Technique::COMMON, &mut it, |e| {
                let mut it = e.children().peekable();
                finish(parse_one_many(&mut it, LightKind::parse)?, it)
            })?,
            technique: Technique::parse_list(&mut it)?,
            extra: Extra::parse_many(it)?,
        })
    }
}

impl XNodeWrite for Light {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let mut e = Self::elem();
        e.opt_attr("id", &self.id);
        e.opt_attr("name", &self.name);
        let e = e.start(w)?;
        self.asset.write_to(w)?;
        let common = ElemBuilder::new(Technique::COMMON).start(w)?;
        self.kind.write_to(w)?;
        common.end(w)?;
        self.technique.write_to(w)?;
        self.extra.write_to(w)?;
        e.end(w)
    }
}

/// The kind of light being described.
#[derive(Clone, Debug)]
pub enum LightKind {
    /// Describes an ambient light source.
    Ambient(AmbientLight),
    /// Describes a directional light source.
    Directional(DirectionalLight),
    /// Describes a point light source.
    Point(Box<PointLight>),
    /// Describes a spot light source.
    Spot(Box<SpotLight>),
}

impl From<SpotLight> for LightKind {
    fn from(v: SpotLight) -> Self {
        Self::Spot(Box::new(v))
    }
}

impl From<PointLight> for LightKind {
    fn from(v: PointLight) -> Self {
        Self::Point(Box::new(v))
    }
}

impl From<DirectionalLight> for LightKind {
    fn from(v: DirectionalLight) -> Self {
        Self::Directional(v)
    }
}

impl From<AmbientLight> for LightKind {
    fn from(v: AmbientLight) -> Self {
        Self::Ambient(v)
    }
}

impl LightKind {
    /// Parse a [`LightKind`] from an XML element.
    pub fn parse(e: &Element) -> Result<Option<Self>> {
        Ok(Some(match e.name() {
            AmbientLight::NAME => Self::Ambient(AmbientLight::parse(e)?),
            DirectionalLight::NAME => Self::Directional(DirectionalLight::parse(e)?),
            PointLight::NAME => Self::Point(PointLight::parse_box(e)?),
            SpotLight::NAME => Self::Spot(SpotLight::parse_box(e)?),
            _ => return Ok(None),
        }))
    }
}

impl XNodeWrite for LightKind {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        match self {
            LightKind::Ambient(e) => e.write_to(w),
            LightKind::Directional(e) => e.write_to(w),
            LightKind::Point(e) => e.write_to(w),
            LightKind::Spot(e) => e.write_to(w),
        }
    }
}

/// Describes an ambient light source.
#[derive(Clone, Debug)]
pub struct AmbientLight {
    /// Contains three floating-point numbers specifying the color of the light.
    pub color: Box<[f32; 3]>,
}

impl AmbientLight {
    /// Create a new `AmbientLight` with the given color.
    pub fn new(color: [f32; 3]) -> Self {
        Self {
            color: Box::new(color),
        }
    }
}

impl XNode for AmbientLight {
    const NAME: &'static str = "ambient";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        let color = parse_one("color", &mut it, parse_array_n)?;
        finish(AmbientLight { color }, it)
    }
}

impl XNodeWrite for AmbientLight {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let e = Self::elem().start(w)?;
        ElemBuilder::print_arr("color", &*self.color, w)?;
        e.end(w)
    }
}

/// Describes a directional light source.
///
/// The light’s default direction vector in local coordinates is [0,0,-1],
/// pointing down the negative z axis.
/// The actual direction of the light is defined by the transform of the node
/// where the light is instantiated.
#[derive(Clone, Debug)]
pub struct DirectionalLight {
    /// Contains three floating-point numbers specifying the color of the light.
    pub color: Box<[f32; 3]>,
}

impl DirectionalLight {
    /// Create a new `DirectionalLight` with the given color.
    pub fn new(color: [f32; 3]) -> Self {
        Self {
            color: Box::new(color),
        }
    }
}

impl XNode for DirectionalLight {
    const NAME: &'static str = "directional";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        let color = parse_one("color", &mut it, parse_array_n)?;
        finish(DirectionalLight { color }, it)
    }
}

impl XNodeWrite for DirectionalLight {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let e = Self::elem().start(w)?;
        ElemBuilder::print_arr("color", &*self.color, w)?;
        e.end(w)
    }
}

/// Describes a point light source.
///
/// The position of the light is defined by the transform of the node in which it is instantiated.
///
/// The `constant_attenuation`, `linear_attenuation`, and `quadratic_attenuation` are
/// used to calculate the total attenuation of this light given a distance.
/// The equation used is:
/// ```text
/// A = constant_attenuation + Dist * linear_attenuation + Dist^2 * quadratic_attenuation
/// ```
#[derive(Clone, Debug)]
pub struct PointLight {
    /// Contains three floating-point numbers specifying the color of the light.
    pub color: Box<[f32; 3]>,
    /// The constant term in the attentuation equation, see [`PointLight`].
    pub constant_attenuation: f32,
    /// The linear term in the attentuation equation, see [`PointLight`].
    pub linear_attenuation: f32,
    /// The quadratic term in the attentuation equation, see [`PointLight`].
    pub quadratic_attenuation: f32,
}

impl PointLight {
    /// Create a new `PointLight` with the given color.
    pub fn new(color: [f32; 3]) -> Self {
        Self {
            color: Box::new(color),
            constant_attenuation: 0.,
            linear_attenuation: 0.,
            quadratic_attenuation: 0.,
        }
    }
}

impl XNode for PointLight {
    const NAME: &'static str = "point";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        let res = PointLight {
            color: parse_one("color", &mut it, parse_array_n)?,
            constant_attenuation: parse_opt("constant_attenuation", &mut it, parse_elem)?
                .unwrap_or(0.),
            linear_attenuation: parse_opt("linear_attenuation", &mut it, parse_elem)?.unwrap_or(0.),
            quadratic_attenuation: parse_opt("quadratic_attenuation", &mut it, parse_elem)?
                .unwrap_or(0.),
        };
        finish(res, it)
    }
}

impl XNodeWrite for PointLight {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let e = Self::elem().start(w)?;
        ElemBuilder::print_arr("color", &*self.color, w)?;
        ElemBuilder::def_print("constant_attenuation", self.constant_attenuation, 0., w)?;
        ElemBuilder::def_print("linear_attenuation", self.linear_attenuation, 0., w)?;
        ElemBuilder::def_print("quadratic_attenuation", self.quadratic_attenuation, 0., w)?;
        e.end(w)
    }
}

/// Describes a spot light source.
///
/// The light’s default direction vector in local coordinates is [0,0,-1],
/// pointing down the negative z axis.
/// The actual direction of the light is defined by the transform of the node
/// where the light is instantiated.
///
/// The `constant_attenuation`, `linear_attenuation`, and `quadratic_attenuation` are
/// used to calculate the total attenuation of this light given a distance.
/// The equation used is:
/// ```text
/// A = constant_attenuation + Dist * linear_attenuation + Dist^2 * quadratic_attenuation
/// ```
///
/// The `falloff_angle` and `falloff_exponent` are used to specify
/// the amount of attenuation based on the direction of the light.
#[derive(Clone, Debug)]
pub struct SpotLight {
    /// Contains three floating-point numbers specifying the color of the light.
    pub color: Box<[f32; 3]>,
    /// The constant term in the attentuation equation, see [`SpotLight`].
    pub constant_attenuation: f32,
    /// The linear term in the attentuation equation, see [`SpotLight`].
    pub linear_attenuation: f32,
    /// The quadratic term in the attentuation equation, see [`SpotLight`].
    pub quadratic_attenuation: f32,
    /// The directional attenuation of the light.
    pub falloff_angle: f32,
    /// A term in the directional attenuation equation of the light.
    pub falloff_exponent: f32,
}

impl SpotLight {
    /// Create a new `SpotLight` with the given color.
    pub fn new(color: [f32; 3]) -> Self {
        Self {
            color: Box::new(color),
            constant_attenuation: 0.,
            linear_attenuation: 0.,
            quadratic_attenuation: 0.,
            falloff_angle: 180.,
            falloff_exponent: 0.,
        }
    }
}

impl XNode for SpotLight {
    const NAME: &'static str = "spot";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        let res = SpotLight {
            color: parse_one("color", &mut it, parse_array_n)?,
            constant_attenuation: parse_opt("constant_attenuation", &mut it, parse_elem)?
                .unwrap_or(0.),
            linear_attenuation: parse_opt("linear_attenuation", &mut it, parse_elem)?.unwrap_or(0.),
            quadratic_attenuation: parse_opt("quadratic_attenuation", &mut it, parse_elem)?
                .unwrap_or(0.),
            falloff_angle: parse_opt("falloff_angle", &mut it, parse_elem)?.unwrap_or(180.),
            falloff_exponent: parse_opt("falloff_exponent", &mut it, parse_elem)?.unwrap_or(0.),
        };
        finish(res, it)
    }
}

impl XNodeWrite for SpotLight {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let e = Self::elem().start(w)?;
        ElemBuilder::print_arr("color", &*self.color, w)?;
        ElemBuilder::def_print("constant_attenuation", self.constant_attenuation, 0., w)?;
        ElemBuilder::def_print("linear_attenuation", self.linear_attenuation, 0., w)?;
        ElemBuilder::def_print("quadratic_attenuation", self.quadratic_attenuation, 0., w)?;
        ElemBuilder::def_print("falloff_angle", self.falloff_angle, 180., w)?;
        ElemBuilder::def_print("falloff_exponent", self.falloff_exponent, 0., w)?;
        e.end(w)
    }
}