1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
use crate::*;

/// Defines the physical properties of an object.
///
/// It contains a technique/profile with parameters.
/// The `COMMON` profile defines the built-in names, such as `static_friction`.
#[derive(Clone, Default, Debug)]
pub struct PhysicsMaterial {
    /// A text string containing the unique identifier of the element.
    pub id: Option<String>,
    /// The text string name of this element.
    pub name: Option<String>,
    /// Asset management information about this element.
    pub asset: Option<Box<Asset>>,
    /// Specifies physics-material information for the common
    /// profile that all COLLADA implementations must support.
    pub common: PhysicsMaterialCommon,
    /// Declares the information used to process some portion of the content. (optional)
    pub technique: Vec<Technique>,
    /// Provides arbitrary additional information about this element.
    pub extra: Vec<Extra>,
}

impl PhysicsMaterial {
    /// Build a `PhysicsMaterial` with default options.
    pub fn new(id: impl Into<String>) -> Self {
        Self {
            id: Some(id.into()),
            name: None,
            asset: None,
            common: Default::default(),
            technique: vec![],
            extra: vec![],
        }
    }
}

impl XNode for PhysicsMaterial {
    const NAME: &'static str = "physics_material";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        Ok(PhysicsMaterial {
            id: element.attr("id").map(Into::into),
            name: element.attr("name").map(Into::into),
            asset: Asset::parse_opt_box(&mut it)?,
            common: parse_one(Technique::COMMON, &mut it, PhysicsMaterialCommon::parse)?,
            technique: Technique::parse_list(&mut it)?,
            extra: Extra::parse_many(it)?,
        })
    }
}

impl XNodeWrite for PhysicsMaterial {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let mut e = Self::elem();
        e.opt_attr("id", &self.id);
        e.opt_attr("name", &self.name);
        let e = e.start(w)?;
        self.asset.write_to(w)?;
        let common = ElemBuilder::new(Technique::COMMON).start(w)?;
        self.common.write_to(w)?;
        common.end(w)?;
        self.technique.write_to(w)?;
        self.extra.write_to(w)?;
        e.end(w)
    }
}

/// Specifies physics-material information for the common
/// profile that all COLLADA implementations must support.
#[derive(Clone, Copy, Default, Debug)]
pub struct PhysicsMaterialCommon {
    /// Contains a floating-point number that specifies the dynamic friction coefficient.
    pub dynamic_friction: f32,
    /// Contains a floating-point number that is the proportion
    /// of the kinetic energy preserved in the impact (typically ranges from 0.0 to 1.0).
    /// Also known as "bounciness" or "elasticity."
    pub restitution: f32,
    /// Contains a floating-point number that specifies the static friction coefficient.
    pub static_friction: f32,
}

impl PhysicsMaterialCommon {
    fn parse(e: &Element) -> Result<Self> {
        let mut it = e.children().peekable();
        let res = PhysicsMaterialCommon {
            dynamic_friction: parse_opt("dynamic_friction", &mut it, parse_elem)?.unwrap_or(0.),
            restitution: parse_opt("restitution", &mut it, parse_elem)?.unwrap_or(0.),
            static_friction: parse_opt("static_friction", &mut it, parse_elem)?.unwrap_or(0.),
        };
        finish(res, it)
    }
}

impl XNodeWrite for PhysicsMaterialCommon {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        ElemBuilder::def_print("dynamic_friction", self.dynamic_friction, 0., w)?;
        ElemBuilder::def_print("restitution", self.restitution, 0., w)?;
        ElemBuilder::def_print("static_friction", self.static_friction, 0., w)
    }
}