1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
use crate::*;

/// Describes the visual appearance of a geometric object.
#[derive(Clone, Debug)]
pub struct Material {
    /// A text string containing the unique identifier of the element.
    pub id: Option<String>,
    /// The text string name of this element.
    pub name: Option<String>,
    /// Asset management information about this element.
    pub asset: Option<Box<Asset>>,
    /// Instantiates a COLLADA material resource. See [`InstanceEffectData`]
    /// for the additional instance effect data.
    pub instance_effect: Instance<Effect>,
    /// Provides arbitrary additional information about this element.
    pub extra: Vec<Extra>,
}

impl Material {
    /// Construct a new `Material` from an instance effect.
    pub fn new(id: impl Into<String>, name: impl Into<String>, instance_effect: Url) -> Self {
        Self {
            id: Some(id.into()),
            name: Some(name.into()),
            asset: None,
            instance_effect: Instance::new(instance_effect),
            extra: vec![],
        }
    }
}

impl XNode for Material {
    const NAME: &'static str = "material";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        Ok(Material {
            id: element.attr("id").map(Into::into),
            name: element.attr("name").map(Into::into),
            asset: Asset::parse_opt_box(&mut it)?,
            instance_effect: Instance::parse_one(&mut it)?,
            extra: Extra::parse_many(it)?,
        })
    }
}

impl XNodeWrite for Material {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let mut e = Self::elem();
        e.opt_attr("id", &self.id);
        e.opt_attr("name", &self.name);
        let e = e.start(w)?;
        self.asset.write_to(w)?;
        self.instance_effect.write_to(w)?;
        self.extra.write_to(w)?;
        e.end(w)
    }
}

/// Instantiates a COLLADA material resource.
#[derive(Clone, Debug)]
pub struct InstanceMaterial {
    /// A text string value containing the subidentifier of this element.
    /// This value must be unique within the scope of the parent element.
    pub sid: Option<String>,
    /// The text string name of this element.
    pub name: Option<String>,
    /// Which symbol defined from within the geometry this material binds to.
    pub symbol: String,
    /// The URI of the location of the [`Material`] element to instantiate.
    /// Can refer to a local instance or external reference.
    /// For a local instance, this is a relative URI fragment identifier
    /// that begins with the `"#"` character.
    /// The fragment identifier is an XPointer shorthand pointer that
    /// consists of the ID of the element to instantiate.
    /// For an external reference, this is an absolute or relative URL.
    pub target: UrlRef<Material>,
    /// Connects a parameter in the material’s effect by semantic
    /// to a target in the scene.
    pub bind: Vec<BindM>,
    /// Binds vertex inputs to effect parameters upon instantiation.
    pub bind_vertex_input: Vec<BindVertexInput>,
    /// Provides arbitrary additional information about this element.
    pub extra: Vec<Extra>,
}

impl InstanceMaterial {
    /// Construct a new `InstanceMaterial` with the given bindings.
    pub fn new(
        symbol: impl Into<String>,
        target: Url,
        bind_vertex_input: Vec<BindVertexInput>,
    ) -> Self {
        Self {
            sid: None,
            name: None,
            symbol: symbol.into(),
            target: Ref::new(target),
            bind: vec![],
            bind_vertex_input,
            extra: vec![],
        }
    }
}

impl XNode for InstanceMaterial {
    const NAME: &'static str = "instance_material";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let symbol = element.attr("symbol").ok_or("expecting symbol attr")?;
        let mut it = element.children().peekable();
        Ok(InstanceMaterial {
            sid: element.attr("sid").map(Into::into),
            name: element.attr("name").map(Into::into),
            symbol: symbol.into(),
            target: parse_attr(element.attr("target"))?.ok_or("missing target attribute")?,
            bind: BindM::parse_list(&mut it)?,
            bind_vertex_input: BindVertexInput::parse_list(&mut it)?,
            extra: Extra::parse_many(it)?,
        })
    }
}

impl XNodeWrite for InstanceMaterial {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let mut e = Self::elem();
        e.opt_attr("sid", &self.sid);
        e.opt_attr("name", &self.name);
        e.attr("symbol", &self.symbol);
        e.print_attr("target", &self.target);
        let e = e.start(w)?;
        self.bind.write_to(w)?;
        self.bind_vertex_input.write_to(w)?;
        self.extra.write_to(w)?;
        e.end(w)
    }
}

/// Binds a specific material to a piece of geometry,
/// binding varying and uniform parameters at the same time.
#[derive(Clone, Debug)]
pub struct BindMaterial {
    /// In [`BindMaterial`] these are added to be targets for animation.
    /// These objects can then be bound to input parameters in the normal manner
    /// without requiring the animation targeting system to parse the internal
    /// layout of an [`Effect`].
    pub param: Vec<Param>,
    /// The common profile data is list of [`InstanceMaterial`]s.
    pub instance_material: Vec<InstanceMaterial>,
    /// Declares the information used to process some portion of the content. (optional)
    pub technique: Vec<Technique>,
    /// Provides arbitrary additional information about this element.
    pub extra: Vec<Extra>,
}

impl BindMaterial {
    /// Construct a `BindMaterial` with the given instances.
    pub fn new(instance_material: Vec<InstanceMaterial>) -> Self {
        assert!(!instance_material.is_empty());
        Self {
            param: vec![],
            instance_material,
            technique: vec![],
            extra: vec![],
        }
    }
}

impl XNode for BindMaterial {
    const NAME: &'static str = "bind_material";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let mut it = element.children().peekable();
        Ok(BindMaterial {
            param: Param::parse_list(&mut it)?,
            instance_material: parse_one(Technique::COMMON, &mut it, |e| {
                let mut it = e.children().peekable();
                finish(InstanceMaterial::parse_list_n::<1>(&mut it)?, it)
            })?,
            technique: Technique::parse_list(&mut it)?,
            extra: Extra::parse_many(it)?,
        })
    }
}

impl XNodeWrite for BindMaterial {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let e = Self::elem().start(w)?;
        self.param.write_to(w)?;
        let common = ElemBuilder::new(Technique::COMMON).start(w)?;
        self.instance_material.write_to(w)?;
        common.end(w)?;
        self.technique.write_to(w)?;
        self.extra.write_to(w)?;
        e.end(w)
    }
}

/// Binds values to uniform inputs of a shader or binds values to effect
/// parameters upon instantiation.
/// In the COLLADA spec, this element is called "`<bind>` (material)".
#[derive(Clone, Debug)]
pub struct BindM {
    /// Which effect parameter to bind.
    pub semantic: Option<String>,
    /// The location of the value to bind to the specified semantic.
    pub target: Address,
}

impl BindM {
    /// Construct a `BindM` with the given semantic and target.
    pub fn new(semantic: impl Into<String>, target: impl Into<String>) -> Self {
        Self {
            semantic: Some(semantic.into()),
            target: Address(target.into()),
        }
    }
}

impl XNode for BindM {
    const NAME: &'static str = "bind";
    fn parse(element: &Element) -> Result<Self> {
        debug_assert_eq!(element.name(), Self::NAME);
        let target = element.attr("target").ok_or("missing target attribute")?;
        Ok(BindM {
            semantic: element.attr("semantic").map(Into::into),
            target: Address(target.into()),
        })
    }
}

impl XNodeWrite for BindM {
    fn write_to<W: Write>(&self, w: &mut XWriter<W>) -> Result<()> {
        let mut e = Self::elem();
        e.opt_attr("semantic", &self.semantic);
        e.print_attr("target", &self.target);
        e.end(w)
    }
}