1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
use crate::*;

use generic_array::GenericArray;
use libc::memcpy;
use rand::{thread_rng, Rng};
use rsa::PublicKeyParts;
use std::os::raw::c_void;

// 密钥类型的编码
pub(crate) const KEY_TYPE_RSA: u8 = 0u8;
pub(crate) const KEY_TYPE_RSA2048: u8 = 1u8;
pub(crate) const KEY_TYPE_SECP256K1: u8 = 5u8;

#[derive(Clone)]
pub enum PrivateKey {
    Rsa(rsa::RSAPrivateKey),
    Secp256k1(::secp256k1::SecretKey),
}
// 避免私钥被日志打印出来

impl std::fmt::Debug for PrivateKey {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "[Protected PrivateKey]")
    }
}

impl PrivateKey {
    // 生成rsa密钥的相关接口
    pub fn generate_rsa(bits: usize) -> Result<Self, BuckyError> {
        let mut rng = thread_rng();
        Self::generate_rsa_by_rng(&mut rng, bits)
    }

    pub fn generate_rsa_by_rng<R: Rng>(rng: &mut R, bits: usize) -> Result<Self, BuckyError> {
        match rsa::RSAPrivateKey::new(rng, bits) {
            Ok(rsa) => Ok(Self::Rsa(rsa)),
            Err(e) => Err(BuckyError::from(e)),
        }
    }

    // 生成secp256k1密钥的相关接口
    pub fn generate_secp256k1() -> Result<Self, BuckyError> {
        let mut rng = thread_rng();
        Self::generate_secp256k1_by_rng(&mut rng)
    }

    pub fn generate_secp256k1_by_rng<R: Rng>(rng: &mut R) -> Result<Self, BuckyError> {
        let key = ::secp256k1::SecretKey::random(rng);
        Ok(Self::Secp256k1(key))
    }

    pub fn public(&self) -> PublicKey {
        match self {
            Self::Rsa(private_key) => PublicKey::Rsa(private_key.to_public_key()),
            Self::Secp256k1(private_key) => {
                PublicKey::Secp256k1(::secp256k1::PublicKey::from_secret_key(private_key))
            }
        }
    }

    pub fn sign(&self, data: &[u8], sign_source: SignatureSource) -> Signature {
        let create_time = bucky_time_now();

        // 签名必须也包含签名的时刻,这个时刻是敏感的不可修改
        let mut data_new = data.to_vec();
        data_new.resize(data.len() + create_time.raw_measure(&None).unwrap(), 0);
        create_time
            .raw_encode(&mut data_new.as_mut_slice()[data.len()..], &None)
            .unwrap();

        match self {
            Self::Rsa(private_key) => {
                let hash = hash_data(&data_new);
                let sign = private_key
                    .sign(
                        rsa::PaddingScheme::new_pkcs1v15_sign(Some(rsa::Hash::SHA2_256)),
                        &hash.as_slice(),
                    )
                    .unwrap();
                assert_eq!(sign.len(), private_key.size());
                let sign_data = match private_key.size() {
                    128 => {
                        let mut sign_array: [u32; 32] = [0; 32];
                        unsafe {
                            memcpy(
                                sign_array.as_mut_ptr() as *mut c_void,
                                sign.as_ptr() as *const c_void,
                                sign.len(),
                            )
                        };
                        SignData::Rsa1024(GenericArray::from(sign_array))
                    }
                    256 => {
                        let mut sign_array: [u32; 64] = [0; 64];
                        unsafe {
                            memcpy(
                                sign_array.as_mut_ptr() as *mut c_void,
                                sign.as_ptr() as *const c_void,
                                sign.len(),
                            )
                        };
                        SignData::Rsa2048(*GenericArray::from_slice(&sign_array))
                    }

                    _ => unreachable!(),
                };

                Signature::new(sign_source, 0, create_time, sign_data)
            }

            Self::Secp256k1(private_key) => {
                let hash = hash_data(&data_new);
                assert_eq!(HashValue::len(), ::secp256k1::util::MESSAGE_SIZE);
                let ctx = ::secp256k1::Message::parse(hash.as_slice().try_into().unwrap());

                let (signature, _) = ::secp256k1::sign(&ctx, &private_key);
                let sign_buf = signature.serialize();

                let mut sign_array: [u32; 16] = [0; 16];
                unsafe {
                    memcpy(
                        sign_array.as_mut_ptr() as *mut c_void,
                        sign_buf.as_ptr() as *const c_void,
                        sign_buf.len(),
                    )
                };
                let sign_data = SignData::Ecc(GenericArray::from(sign_array));
                Signature::new(sign_source, 0, create_time, sign_data)
            }
        }
    }

    pub fn decrypt(&self, input: &[u8], output: &mut [u8]) -> BuckyResult<usize> {
        match self {
            Self::Rsa(private_key) => {
                let buf = private_key
                    .decrypt(rsa::PaddingScheme::PKCS1v15Encrypt, input)
                    .map_err(|e| BuckyError::from(e))?;
                if output.len() < buf.len() {
                    let msg = format!(
                        "rsa decrypt error, except={}, got={}",
                        buf.len(),
                        output.len()
                    );
                    error!("{}", msg);

                    Err(BuckyError::new(BuckyErrorCode::InvalidFormat, msg))
                } else {
                    output[..buf.len()].copy_from_slice(buf.as_slice());
                    Ok(buf.len())
                }
            }

            Self::Secp256k1(_) => {
                // 目前secp256k1的非对称加解密只支持交换aes_key时候使用
                unimplemented!();
            }
        }
    }

    pub fn decrypt_aeskey(&self, input: &[u8], output: &mut [u8]) -> BuckyResult<usize> {
        match self {
            Self::Rsa(_) => self.decrypt(input, output),

            Self::Secp256k1(private_key) => {
                if input.len() < ::secp256k1::util::COMPRESSED_PUBLIC_KEY_SIZE {
                    let msg = format!(
                        "not enough buffer for secp256k1 private key, except={}, got={}",
                        ::secp256k1::util::COMPRESSED_PUBLIC_KEY_SIZE,
                        input.len()
                    );
                    error!("{}", msg);

                    return Err(BuckyError::new(BuckyErrorCode::InvalidFormat, msg));
                }

                let ephemeral_pk = ::secp256k1::PublicKey::parse_slice(
                    &input,
                    Some(::secp256k1::PublicKeyFormat::Compressed),
                )
                .map_err(|e| {
                    let msg = format!("parse secp256k1 public key error: {}", e);
                    error!("{}", msg);

                    BuckyError::new(BuckyErrorCode::InvalidFormat, msg)
                })?;
                let aes_key = ::cyfs_ecies::utils::decapsulate(&ephemeral_pk, &private_key);
                if output.len() < aes_key.len() {
                    let msg = format!(
                        "not enough buffer for secp256k1 ecies aeskey, except={}, got={}",
                        aes_key.len(),
                        output.len()
                    );
                    error!("{}", msg);

                    return Err(BuckyError::new(BuckyErrorCode::InvalidFormat, msg));
                }

                output.copy_from_slice(&aes_key);

                Ok(aes_key.len())
            }
        }
    }
}

impl RawEncode for PrivateKey {
    fn raw_measure(&self, _purpose: &Option<RawEncodePurpose>) -> Result<usize, BuckyError> {
        // 这里直接输出正确长度先,然后看如何优化
        match self {
            Self::Rsa(pk) => {
                let spki_der = rsa_export::pkcs1::private_key(pk)?;
                Ok(spki_der.len() + 3)
            }
            Self::Secp256k1(_) => Ok(::secp256k1::util::SECRET_KEY_SIZE + 1),
        }
    }

    fn raw_encode<'a>(
        &self,
        buf: &'a mut [u8],
        purpose: &Option<RawEncodePurpose>,
    ) -> Result<&'a mut [u8], BuckyError> {
        let size = self.raw_measure(purpose).unwrap();
        if buf.len() < size {
            return Err(BuckyError::new(
                BuckyErrorCode::OutOfLimit,
                "[raw_encode] not enough buffer for privake key for private_key",
            ));
        }

        match self {
            Self::Rsa(pk) => {
                let spki_der = rsa_export::pkcs1::private_key(pk)?;
                let mut buf = KEY_TYPE_RSA.raw_encode(buf, purpose)?;
                buf = (spki_der.len() as u16).raw_encode(buf, purpose)?;
                buf[..spki_der.len()].copy_from_slice(&spki_der.as_slice());
                Ok(&mut buf[spki_der.len()..])
            }
            Self::Secp256k1(pk) => {
                let buf = KEY_TYPE_SECP256K1.raw_encode(buf, purpose)?;

                // 由于长度固定,所以我们这里不需要额外存储一个长度信息了
                let key_buf = pk.serialize();
                buf[..::secp256k1::util::SECRET_KEY_SIZE].copy_from_slice(&key_buf);
                Ok(&mut buf[::secp256k1::util::SECRET_KEY_SIZE..])
            }
        }
    }
}

impl<'de> RawDecode<'de> for PrivateKey {
    fn raw_decode(buf: &'de [u8]) -> Result<(Self, &'de [u8]), BuckyError> {
        if buf.len() < 1 {
            return Err(BuckyError::new(
                BuckyErrorCode::OutOfLimit,
                "not enough buffer for PrivateKey",
            ));
        }
        let (type_code, buf) = u8::raw_decode(buf)?;
        match type_code {
            KEY_TYPE_RSA => {
                let (len, buf) = u16::raw_decode(buf)?;
                if buf.len() < len as usize {
                    return Err(BuckyError::new(
                        BuckyErrorCode::OutOfLimit,
                        "not enough buffer for rsa privateKey",
                    ));
                }
                let der = &buf[..len as usize];
                let private_key = rsa::RSAPrivateKey::from_pkcs1(der)?;
                Ok((PrivateKey::Rsa(private_key), &buf[len as usize..]))
            }
            KEY_TYPE_SECP256K1 => {
                if buf.len() < ::secp256k1::util::SECRET_KEY_SIZE {
                    return Err(BuckyError::new(
                        BuckyErrorCode::OutOfLimit,
                        "not enough buffer for secp256k1 privateKey",
                    ));
                }

                match ::secp256k1::SecretKey::parse_slice(
                    &buf[..::secp256k1::util::SECRET_KEY_SIZE],
                ) {
                    Ok(private_key) => Ok((
                        PrivateKey::Secp256k1(private_key),
                        &buf[::secp256k1::util::SECRET_KEY_SIZE..],
                    )),
                    Err(e) => {
                        let msg = format!("parse secp256k1 private key error: {}", e);
                        error!("{}", e);

                        Err(BuckyError::new(BuckyErrorCode::InvalidFormat, msg))
                    }
                }
            }
            _ => Err(BuckyError::new(
                BuckyErrorCode::InvalidData,
                &format!("invalid private key type code {}", buf[0]),
            )),
        }
    }
}

#[cfg(test)]
mod test {
    use crate::{PrivateKey, RawConvertTo, RawDecode, SignatureSource};

    #[test]
    fn private_key() {
        let msg = b"112233445566778899";
        let pk1 = PrivateKey::generate_rsa(1024).unwrap();
        let sign = pk1.sign(msg, SignatureSource::RefIndex(0));
        assert!(pk1.public().verify(msg, &sign));

        let pk1_buf = pk1.to_vec().unwrap();
        let (pk2, buf) = PrivateKey::raw_decode(&pk1_buf).unwrap();
        assert!(buf.len() == 0);

        assert!(pk2.public().verify(msg, &sign));
    }
}